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EXECUTIVE SUMMARY 

This project developed and implemented a methodology which measured construction progress 
and compared it with the projected 3D shape, then quantifying the difference. The results of this 
project supported the development of DOT standards which can positively impact near future 
bridge construction documents. The participation of experts in infrastructure maintenance and 
LIDAR sensing within this project enabled students to get exposed to industry careers related to 
infrastructure management and maintenance using new technologies. 

The New Mexico Department of Transportation (NMDOT) was interested in exploring new 
technology available and implementing it in the Quality-Control Quality-Assurance (QCQA) 
during the concrete pour and concrete finishing phases of bridge construction. There are no 3D 
requirements in the form of LIDAR measurements satisfying QCQA standards for the constructed 
concrete structures (especially for bridge decks). According to NMDOT, the current QCQA 
requirements are limited to the measurement of discrete points. If the entire volume/surface could 
be compared with the designed profile (in 3D) then the quality of the finished surface would be 
quantified and objective with more precision. 

State departments of transportation are facing three related problems without the mentioned 
technology: (1) the quality of the construction is not comparable across different projects, and 
errors may be carried over without being noted causing future costs, or unsafe structures; (2) high 
quality construction projects cannot be rewarded, and low-quality projects go unnoticed; (3) since 
errors cannot be measured, the standards cannot be changed or imposed. 

With the proposed automation of a measuring technique and the objective score that is determine 
with the data collected on near real-time, new requirements can be imposed, and the quality of the 
constructed surface as compared with the design surface can be increased. Consequently, from the 
strong interest of the NMDOT in this topic alongside the experience of the PIs on bridge design, 
bridge construction, field inspection, and LIDAR technology yielded the results with impact both 
in research and in industry (specifically, recommendations about standards for implementation of 
technology in specifications for NMDOT or other DOTs). 
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1. INTRODUCTION 

Bridges play a vital role in the north American transportation networks (1). There are more than 
614,387 bridges in the United States, which are mostly owned by state or local governments (2). 
The highest percentage of highway bridges were built in the late 1950s and early 1970s, almost 
40% bridges have been in use more than 50 years (2). In recent years, the number of bridges with 
structural defects has been increasing. Expenditures for bridge maintenance and replacement have 
risen, accounting for $10.5 billion out of $12 billion in total bridge capital outlays in 2004 (3-4). 
The bridge quality monitoring process during the construction period is critical to ensuring the 
safety of bridges (5-15). The proposed research project developed and implemented a methodology 
to measure construction progress and compare it with the projected 3D shape and quantifying the 
difference. This project proposed a first step towards the development of USDOT standards that 
can be added in near future bridge construction documents. The conceptual objective of the 
mentioned project is displayed in Figure 1. Figure 1 shows a 3D view digitally collected overlaid 
with the rail rebar layout in the field. As shown in this figure, the inspector manually installs the 
rebar in the field, however the 3D view of the rebar collected digitally can assist as an objective 
quantification of rebar spacing, once it is saved in the computer. Another advantage shown in this 
figure is that the digital information can be analyzed globally, as opposed to the field inspection, 
where as shown in the figure the technician only has access to the nearby rebar. The participation 
of experts in infrastructure maintenance and LIDAR sensing provided students with exposure to 
industry careers related to infrastructure management and maintenance using new technologies. 

Figure 1. LIDAR to monitor construction activities. 

1.1. Background 

The New Mexico Department of Transportation (NMDOT) was interested in exploring new 
technologies available and implementing these in the quality-assurance quality-control (QAQC) 
process of bridge construction, in particular during concrete pour and concrete finishing (16-17). 
If the entire volume/surface could be compared with the designed profile (in 3D) then the quality 
of the finished surface would be quantified, and a score could be associated with the quality. 
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1.2. Research Methodology 

This research project employed a methodology using LIDAR. LIDAR was tasked to measure 
construction progress and compare it with the projected 3D shape, quantifying the difference (18-
20).This project proposed the implementation of this methodology for the development of DOT 
standards that can be added in near future bridge construction documents. The PI has discussed 
this project closely with Kathy Crowell from the NMDOT bridge design group, and they agreed 
to also support this research. 

This project sought to increase the technical collection of data during construction (21-26). A 
multi-disciplinary team from the University of New Mexico (UNM) collaborated with NMDOT 
to measure the 3D reinforcement layout during bridge construction using LIDAR. The approach 
proposed by this UNM team, supported by the input of infrastructure owners' guarantees, the 
broader impact of this research has been attained. Figure 2 shows the rebar construction process 
in the field conducted by field technicians, where they are manually installing reinforcement bars 
with measurements and inspections they conduct simultaneously, prior to concrete pour. As shown 
in this figure, the field technicians walk on top of the rebar cage to observe spacing and they adjust 
manually as needed on real-time, based on their visual observation. 

Figure 2. Bridge reinforcement during construction. 

1.3. Future Funding Proposals on LIDAR Technology for Bridge Monitoring 

The results of this project exhibit the significant impact LIDAR technology has on the promotion 
of monitoring and evaluation of bridge systems (27-29). Researchers redefined this technology to 
empower bridge construction inspectors in acquiring measurements and quantifications of the 
condition of bridge reinforcement during construction (30-32). This empowerment enables a 
potential standardization of this technology across the NMDOT and the bridge construction 
industry (33). Furthermore, the results of this project show that using LIDAR equipment and 
software/hardware tools can help enable the construction inspector to collect accurate progress 
data of the bridges. One patent has been disclosed by the PIs and the graduate student in the UNM 
patent office related to LIDAR technology for bridge inspection. New proposals using the 
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preliminary data will be submitted to the USDOT, Federal Railway Administration (FRA), 
National Science Foundation (NSF), and USDOT pool funds. 

Nonetheless, this research's risk-reward ratio is low since the collaborators' quality increases the 
impact of the study in two different departmental units at UNM. Additionally, the strong 
partnership with the NMDOT guarantees the high impact of this research and allows UNM 
students to collaborate with a different institution throughout the project, and more specifically, to 
interact in researching outside of the state of New Mexico, broadening the potential impact for 
regional students. Another aspect of this project is the experience of the PI and co-PIs in offering 
STEM courses related to this research. The active participation of the PI and Co-PI have supported 
student exposure to research that is strongly tied to innovation and entrepreneurship. Collaborating 
with NMDOT and their bridge group provides an excellent opportunity for knowledge 
dissemination at different levels in higher education, but also in pre-college education in the region 
of New Mexico (34-41). 
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2. OBJECTIVES 

This section presents the objectives obtained for this project. The objectives of this research were 
divided into two phases: research phase and implementation phase. 

2.1. Research Phase 

The accomplishment of the project objective(s) in the Research phase required the following tasks: 

1. Researchers have established with NMDOT a prototype route for choosing the LIDAR 
needs and specifications required for this project. 

2. In collaboration with NMDOT, elaborated scientific hypothesis on preliminary testing and 
validation in the CoreSLAB structure company. 

3. Developed an experiment in the CoreSLAB and reported the results to NMDOT. 
Researchers tested and checked the new LIDAR technology to the bridge wingwall 
reinforcing bar measurement using input from objectives 1 and 2. 

4. Researchers involved both students and industry in 3. 
5. Established preliminary specifications for bridge deck QOQAQC. 
6. As part of the research objectives, researchers also shared the LIDAR technology 

measurement algorithm with other universities, industry, and owners. 
7. At the end of the project, the researchers conducted one workshop with NMDOT and 

presented the achievements to NMDOT project review committee. 
8. In collaboration with NMDOT, selected one bridge of interest to test the outdoor 

implementation and write the results. 
By the end of this project, researchers have finished all the research objectives but field bridge 
construction experiments and the update of specifications because of the COVID-19 epidemic. 
When safely so, after COVID-19 has lowered the concern of safety, the researchers will test the 
bridge construction and validate it with other means of measurement. Subsequently, they will 
compare these results and the specifications requirements between the field research on a bridge 
and the current laboratory testing. With the bridge data, the researchers will propose the update of 
the specifications. This will occur in the implementation phase due to COVID-19. 

2.2. Implementation Phase 

The results of this research have been shown to infrastructure owners both in a webinar and in the 
workshop. Infrastructure owners have expressed their interest in committing resources to further 
developing LIDAR technologies to inspect transportation infrastructure, more specifically, 
NMDOT. The following implementation steps are: 

1. Development of an algorithm to use LIDAR point cloud 3D data for bridge deck 
inspections demonstrated in laboratory size settings to NMDOT during the workshop. 

2. Benchmarking of the results of using the LIDAR point cloud 3D data processing algorithm 
comparing benefits for field implementation: safety, accuracy, and time (reinforcing bar 
spacing measurement, shown to NMDOT). 

3. The teaching of LIDAR scanner technology to undergraduate students with field 
experiments (March 2020). 

4. Cooperating and communicating the LIDAR sensing technology and point cloud data 
processing with Virginia Polytechnic Institute and State University and the University of 
Nebraska-Lincoln. 
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5. Transferring the research developments with the bridge engineer in NMDOT and 
construction inspectors in CoreSLAB and the technical staff in LIDAR technology 
company GeoSlam. 

6. Trimester reports to panel review to receive feedback in the technology. 
7. Demonstration at the international webinar: the 1st Smart Management of Infrastructure 

Workshop. 

The proposed research equipment and analysis methods provided evidence that with LIDAR 
technology, inspectors increase their ability to quantify bridge construction quality objectives 
faster, more accurate, and more safely. The project’s Results were presented to the industry, 
including, but not limited to: Federal Railway Administration (FRA), US Department of 
Transportation (USDOT), and NMDOT. In the implementation phase, the objective was to identify 
the needs of industry for the practical implementation of LIDAR sensing. The further development 
of LIDAR sensing applications addressed those. The implementation’s final contribution was that 
LIDAR technology algorithm applications were developed not only to address structural 
inspections from a precision standpoint, but also in areas of demand of industry and owners from 
their day-to-day operations. 
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3. LITERATURE REVIEW 

This section presents a literature review to covers two topics: bridge reinforcing bar placement 
evaluation and the potential of LIDAR technology as automatic data capturing visualization tool. 
The reviewed literature includes books, journal papers, technique reports, conference papers, 
thesis, and dissertations. 

3.1. Bridge Reinforcing Bar Placement Evaluation 

3.1.1. Specifications for Bridge Reinforcing bar Construction 
This section first discussed the importance of bridge reinforcing bar placement. According to 
Standard Specifications for Highway and Bridge Construction (42), the general placement 
guidelines for bridge reinforcing bar are recommend: 

 The Contractor shall firmly support reinforcing bars in deck slabs with approved devices 
spaced at intervals not exceeding 3.3 ft. The Contractor shall securely tie down reinforcing 
bar mats in Bridge decks to girders and forms to prevent upward movement during concrete 
placement. 

 The Contractor shall not allow the spacing between adjacent reinforcement bars to vary 
more than 1/2 inch (13mm) from the dimensions shown in the Contract. 

 The Contractor shall place and maintain reinforcement bars within 1/4 inch (6mm) of the 
vertical dimensions shown in the Contract. 

 The Contractor shall not allow the concrete cover over the top layers of reinforcement to 
be less than two (2) inches. 

 The Contractor shall check the top elevation of the reinforcement unit before and after 
placing the concrete. If the reinforcement unit is not maintained within the specified 
tolerances, the Contractor shall make corrections. 

According to Standard Specifications for Highway and Bridge Construction (NMDOT, 2019 
edition), the checking guidelines for bridge reinforcing bar are recommend: 

 Clearances and respective tolerances for bridge deck reinforcing must be given special 
attention when checking. The Contractor shall place bottom reinforcing bars with a 
minimum cover of one (1) inch. Except in cases where reinforcing bars are not parallel to 
form corrugations, the Contractor shall center the bars (approximately) in the bottom layer 
of the primary reinforcement over the valleys of the forms when necessary to achieve the 
minimum concrete cover. The Contractor shall not allow the distance from the top of the 
slab to the main slab reinforcement's bottom layer to be less than the dimension shown in 
the Contract. 

 Clearance of bottom reinforcement from the bottom of the slab must be given special 
attention when checking. The clearance shall be the nominal clearance shown on the plans 
with a tolerance of minus 3 mm (1/8 inch) and plus 6 mm (1/4 inch). 

 Distance from the bottom of the slab to the top of the top mat of reinforcement must be 
given special attention when checking. When all top reinforcing is of the same diameter, 
the nominal distance is to be maintained with a tolerance of minus 6 mm (1/4 inch). 
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 Bar  size  Nominal  Weight  (lb/ft)  Diameter  (inch) 

 No.  3  0.376  0.375 

 No.  4  0.668  0.500 

 No.  5  1.043  0.625 

 No.  6  1.502  0.750 

 No.7  2.044  0.875 

 No.  8  2.670  1.000 

 No.  9  3.400  1.128 

 No.  10  4.303  1.270 

 No. 11   5.313  1.410 

 No.  14  7.650  1.693 

 No.  18  13.600  2.257 

 

       
           

            

               
                  

                    
                 

                
               

                 

3.1.2. Reinforcing Bar 
The Contractor shall provide deformed bars in accordance with AASHTO M 31, Grade 60, or 
ASTM A706, Grade 60, at the nominal dimensions in accordance with Table 540.2.1:1 "Nominal 
Dimensions of Reinforcement." Table 1 shows the weight and dimensions of reinforcement bars 
corresponding to each bar size. AASHTO M31 Grade 40 may be used for Reinforced Concrete for 
Minor Structures (Section 515 only). The installation of the reinforcing bar is critical for the 
success of the overall bridge. 

Table 1. Nominal Dimensions of Reinforcement. 

3.1.3. Current Bridge Reinforcing Bar Placement Evaluation 
Previous research reviews that develop an efficiency real-time information on work-face 
operations can help engineers and managers make a quick grade decision. 

One inspection method of the reinforcing bar placement before the concrete pour is a visual 
inspection by the clerk of works or equivalent. Using a steel tape to check the cover thickness will, 
and any spacers that have fallen off or been broken will need to be replaced. In addition, there is 
also a surveyor who will check the steel level according to the required level on the design 
drawing. If these levels are satisfactory, and the clerk has completed the visual checks, the pour 
will proceed. Figure 3 shows an example of using conditional method tape measurement to inspect 
the rebar location and rebar construction quality. In this figure, the inspectors use a steel tape to 
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measure the rebar cage bay by bay, and it normally need more than one people to conduct this 
measurement. One people hold the tape on the rebar surface and the other one help to record the 
measurement. 

Figure 3. Bridge reinforcement placement inspection during construction. 

The quality and durability of bridges depend heavily on the quality control during construction, 
particularly on the quality of reinforcing bar placement. At present, bridge inspection mainly uses 
visual inspection and manual defect measurement. However, manually inspect the reinforcing bar 
location is a time-consuming, expert-dependent and error-prone procedure. Extracting necessary 
information about the number, location, and size of the reinforcing bar is a major task for bridge 
inspectors. The most common on-site evaluation methods for field inspection of reinforcing bars 
are manually and need to be improved. 

3.2. LIDAR Sensor for Transportation Infrastructure Applications 
Currently, LIDAR (Light Detection and Ranging) is being used to collect large amounts of data 
that can be used to reconstruct 3D cloud points with high fidelity. However, to date, there is no 
capability for collecting 3D clouds of data that can be used to inform about the quality of the 
reinforcing bar layout in the real-time or practical level of detail. If LIDAR scanning would be 
accessible and simplified to this application, the owner and the engineer would be able to quantify 
at the site automatically about the actual quality of the reinforcement, so objective quantification 
of the reinforcing bar would be made accessible across bridges and construction sites. The strong 
interest of the NMDOT in this topic and the experience of the PIs on bridge design and construction 
field inspection, bridge sensing technology, and LIDAR have identified that this is a topic of 
interest that can have an impact both in research and in the industry (specifically, recommending 
standards for implementation of technology in specifications for NMDOT or other DOTs). 

Ongoing research has already started, and it is being funded by Tran-SET center of transportation. 
Research to date includes a literature review of existing LIDAR technology in academia and 
industry and preliminary software familiarity of the supported student. The preliminary stage has 
also identified that the emphasis of this support will be in the practical implementation of LIDAR 
data collection in the field so standards can be made that can be used for the construction 
environment and schedules. The emphasis will be in accelerated data collection and data 
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processing that enables a quick return of information about the reinforcement quality in the field 
in real scenarios of construction. A preliminary literature review has identified that the top 
reinforcing bar is of higher interest and also different reinforcing bar types in terms of requirements 
for repeatability of the proposed methodology across projects. 

The use of laser scanning in construction has been documented widely in various studies. Tang, 
P., Huber, D., et al. have reviewed related techniques on the automatic reconstruction of as-built 
building information models from laser-scanned point clouds in 2010. Many other researchers 
have implied a laser scanner on the quality control of bridge deck construction, bridge damage 
evaluation, and post-disaster assessment. However, the use of laser scanning to locate reinforcing 
bar prior to pouring concrete has not been widely documented. Only little published research on 
3D image data to control drilling for embeds into reinforced concrete bridge decks and building 
reinforcing bar recognition. The laser scanner can produce high-density point clouds that could be 
used for 3D mapping. The main limitations of laser scanners include acquiring the data and their 
size, which limits their mobility. And the 3D imaging laser scanning method is mixed pixel 
phenomenon, range errors for thin structures, range jumps at reflectance and color boundaries, and 
large errors due to specular reflection. Luckily, the new laser scanners are more compact and more 
accurate. The benefits of laser scanning varied in various form factors to meet mission 
requirements (vehicle-mounted, pole-mounted, sUAS airborne, manned airborne). 
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4. METHODOLOGY 

This section covers the completion of two tasks at the beginning of the project that are essential 
for the practical roadmap implementation with the NMDOT. For Task 1, the PIs established with 
NMDOT a prototype route for choosing the LIDAR needs and specifications required for this 
project. For Task 2, the PIs collaborated with NMDOT to elaborate scientific hypothesis on 
preliminary testing and validation in the laboratory. 

4.1. Establish with NMDOT a prototype route for choosing the LIDAR needs 
and specifications required for this project 
LIDAR (Light Detection and Ranging) is a scanning laser technology that can collect 3D point 
cloud data of objects. A LIDAR system (which can be installed on anything, from an airplane to a 
simple tripod) emits up to 1 million pulses per second in a scanning mode, and each point can hit 
the nearest line of sight target. The light reflected back to the scanner is measured, and the distance 
is calculated based on the speed of light. Figure 4 shows the essential components of LIDAR 
system. Generally, as shown in Figure 4, a LIDAR system is consisting of a camera, high speed 
shutter, lens and light as the signal generator, then LIDAR measures distances by illuminating the 
object with laser light and measuring the reflection with a sensor. 

Figure 4. Basic Components of LIDAR System. 

The following characteristics of LIDAR exhibit its potential to be used in the transportation 
systems. 

 Only technology for detailed remote sensing of structure obscured by vegetation. 
 Works at night. 
 Easy to develop and apply evaluation standards. 
 Combines surveying, imaging and high-speed 3D scanning in one revolutionary solution 

can be used for structural inspection. 
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 Detailed standards through American Society for Photogrammetric Engineering and 
Remote Sensing (ASPRS). 

 Widely deployed by transportation agencies (trusted) and survey companies. 
 Available in a variety of form factors to meet mission requirements (vehicle mounted, 

pole mounted, UAS airborne, manned airborne). 

LIDAR scanner equipment can be useful tools during bridge reinforcing bar construction 
inspections need high resolution and high accuracy. Table 2 presents a list of relevant popular 
LIDAR scanners in the marketplace. The popular LIDAR scanners in the market have high 
accuracy and light-weight. The scanner’s brand is FOCUSS 350, Lecia Station P40, Leica S Station 
C10 and Trimble X7 3D. They have the similar shape design and scanning range is up to 300 m 
except Trimble X7 3D, the measuring accuracy is millimeter level and the weight is portable. 
However, consider the price and accuracy, the researchers choose the ZEB HORIZON scanner. 

Table 2. Popular LIDAR Scanner. 

LIDAR Brand FOCUSS 350 Leica Station P40 Leica S Station C10 Trimble X7 3D 

Appearance 

Scanning range 0.6m - 350m 0.4m - 270m 0.1m - 300m 0.6m - 80m 
Measuring 
Accuracy 

+/-1mm +/-1.2mm 2mm 2mm 

Angular 19" vertical; 8" horizontal; 12" horizontal; 21" horizontal; 
Accuracy 19" horizontal 8" vertical 12" vertical 21" vertical 
Field of view 360° ×300° 360° ×290° 360° ×270° 360° ×282° 
Power supply 19 V 24V DC, 10-240 V 15 V DC, 90 – 260 V Rechargeable Li-

AC; Battery AC lon battery 11.1V, 
6.5Ah 

Data storage 32 GB 256GB internal solid- 80 GB onboard solid- 256 GB Solid State 
capacity state drive (SSD) or state drive (SSD) or Drive (SSD), 

external USB derive external USB device (512GB or more for 
best performance) 

Weight 4.2Kg 12.25Kg 13 Kg 5.8 Kg 
(W×D×H) mm 230 × 183 × 103 238 × 358 × 395 238 × 358 × 395 178 ×170 ×353 

After comprehensive consideration and discussion with NMDOT on their needs for LIDAR in the 
field, informed by a field visit to a bridge construction on November in 2019, researchers decided 
to utilize the LIDAR scanner from GeoSLAM. The product model is ZEB HORIZON. This 
scanner is great for indoor and outdoor use, including spaces where features are positioned further 
apart. Moreover, it is lightweight, simple to use, fast to capture and easy to process, making it even 
more desirable. The technical specifications are shown in table 3. Table 3 shows the range of the 
LIDAR scanner is 100m, field of view is 360° ×270°, the relative accuracy is 1 cm to 3 cm, the scanner weight 
is 3.7 Kg. In future research, the new model GeoSLAM Zeb Revo Real-Time scanner will be 
considered. 
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Table 3. ZEB HORIZON Technical Specification. 

Range 100m 
FOV 360° ×270° 
Protection class IP 54 
Processing Post 
Data logger carrier Backpack or shoulder strap 
Scanner weight 3.7kg 
Colorized point cloud  

Intensity  

Referenced imagery  

Scanner points per second 300,000 
No. of sensors 16 
Relative accuracy 1 - 3 cm 
Raw data file size 100-200MB /min ZEB HORIZON Scanner 

4.2. In collaboration with NMDOT, elaborate scientific hypothesis on 
preliminary testing and validation in the laboratory. 
In order to explore a scientific hypothesis of the new proposed approach and solution with the 
selected LiDAR, the research team visited in November 2019 a bridge construction with the 
NMDOT. During this bridge inspection and with meetings over the phone afterwards, the NMDOT 
outlined the objectives of the scanning for UNM. As a result, the proposed hypothesis from UNM 
is that the scanning can collect rebar spacing that is more accurate and in a faster, safer, and 
convenient inspection process than the current tape measurement with LiDAR. To validate this 
hypothesis, the researchers proposed a methodology following four steps: (1) rebar scanning; (2) 
registering the point cloud model; (3) comparing the LIDAR model to the CAD blueprint system; 
and (4) assessing the accuracy to check the hypothesis. Figure 5 shows the detailed workflow of 
bridge scanning by the LIDAR system. The researchers worked on this project follows the detail 
steps as shown in Figure 5. Firstly, set a bridge rebar cage objective, the used LIDAR scanner scan 
the rebar cage, build the point cloud model, and compared the point cloud model with CAD system. 
Based on the comparison, researchers can get the accuracy assessment of the rebar construction 
quality. 
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Figure 5. Workflow of Bridge Scanning by LIDAR System. 

The methodology presents a LIDAR scanning based geometric data collection process for bridge 
reinforcing bar using a case study. Researchers created 3D models for the bridge reinforcing bar 
cage with LIDAR scanned data for further analysis, such as visualization, geometric feature 
extraction. We compared both the current bridge designed data from the CAD system and the 
LIDAR scanning data in data collection, data processing, and data interpretation. A comparison of 
these processes showed that the LIDAR scanning process could provide more accurate and 
comprehensive data, which can be used for future bridge QCQA data needs. 
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5. RESULTS 

This section advances the results from Chapter 4 in the following subsequent tasks: developing 
experiment in the laboratory, propose objective assessment of rebar quality with NMDOT, and 
report the results to NMDOT, and receive their feedback prior to bridge testing. The PIs prepared 
the ZEB LIDAR scanner equipment for the experiment and conducted first experiment in a 
wingwall rebar cage in CoreSLAB, which is a structure being scanned in the field, which is more 
advanced that the laboratory conducted prior for validation. The authors analyzed the result data 
and finished the progress report of this experiment and communicated with NMDOT, prior to 
testing the method for barriers for implementation in the field. The researchers tested this 
methodology in the bridge construction and validated it with other means of measurements in the 
field, such as tape measurers which made this difficult in the field. The results from the bridge 
scanning confirmed that the objective inspection of rebar can be attained even in a real bridge site. 
The final contribution of this research development is that the researchers have proposed a new 
procedure that prioritize the change of specifications that recommend using LiDAR for collecting 
spacing, and furthermore, proposed a new LiDAR informed quantification of the quality of the 
inspection prior to concrete pour. The subsequent sections outline the research results that support 
the practical implementation based on the technical achievements of this work and the feedback 
from NMDOT on this process. 

5.1. Scan Object: Wingwall Reinforcing bar Cage 
Bridge wingwalls are the retaining walls adjacent to the abutment of the bridge. Wing walls are 
provided at both ends of the abutments to retain the earth filling of the approaches. There are more 
than 13,000 integral abutment bridges in service in the USA. Wingwalls are a necessary 
component of the most integral abutment bridges to retain the fill that supports the roadway. 
Wingwalls design, construction, orientation and connection details can impact the forces induced 
in and the distribution of the forces throughout the structure. Figure 6 shows the picture of a bridge 
wingwall. For the bridge in Figure 6, the precast wing walls are adjacent to the abutments and act 
as retaining walls. They are generally constructed of the same material as those of abutments. 
The wing walls can either be attached to the abutment or be independent of it. 

Wingwall 

 
 

  

              
             

                
              

                 
              

              
              

               
                 

                  
               

             
              

              
              

     

       
                

                  
              

               
            

                  
                  

               
               

 
         

 

Figure 6. A constructed bridge with cantilevered flared wingwalls. 
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5.2. Experiment Setup 
This experiment developed an automated quality assessment technique for precast reinforcing bar 
cage. Figure 7 (a) shows the schematic of the overall hardware configuration for the proposed 
technique. It is assumed that the reinforcing bar cage and the LIDAR scanner positioned above the 
rebar cage scans the whole surface in a single scan. Figure 7(b) shows the necessary steps for the 
proposed reinforcing bar spacing quality assessment technique, which includes data acquisition, 
data processing, reinforcing bar data extraction, reinforcing bar spacing estimation and quality 
assessment. The research group conducted an experiment in the CoreSLAB Construction Site. A 
wingwall reinforcing bar cage with a size of 104.5 𝑖𝑛𝑐ℎ𝑒𝑠 × 64 𝑖𝑛𝑐ℎ𝑒𝑠 was chosen as the testbed. 
The LIDAR scanner selected was a GeoSLAM ZEB HORIZON Scanner. Figure 7 (a) shows the 
LIDAR scanning setup, the LIDAR scanner is on the top of the rebar cage, and the researcher held 
the scanner walk around the rebar cage and collected the rebar data in 30 seconds. Figure 7 (b) 
shows the experiment framework of experiment data process, including data acquisition, 3D 
reconstruction, and quality evaluation. 

Figure 7. LIDAR Reinforcing bar scanning: (a) setup; (b) framework. 

5.3. Experiment Data Collection 
The data acquired in this experiment was collected within the CoreSLAB testbed where a wingwall 
reinforcing bar cage that would be found on a bridge was constructed. The reinforcing bar cage 
was designed and fabricated to easily simulate various reinforcing bar configurations. The 
configuration of the reinforcing bar cage uses #5 reinforcing bar. The two layers of reinforcing bar 
are separated by approximately 4 inches. In this case, the site coordinates of the testbed are 
predefined using surveying techniques. The inputs for the algorithm are point cloud. Figure 8 
depicts the reinforcing bar cage and the corresponding scanning directions. Figure 8 (a) shows the 
rebar measurement by steel tape, one researcher use the tape to measure the spacing of each bay 
and the other researcher use a pencil and notebook to record the measurement. Figure 8 (b) shows 
the rebar data collection by LIDAR scanner. The researcher held the LIDAR scanner on the top of 
the rebar cage and walked around the it, then the scanning collection can finish in 30 seconds. 
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Figure 8. Data Collection. Left: Measurement by tape; Right: Measurement by LIDAR scanner. 

Foremost, it is necessary to determine the position and scan parameters of the LIDAR scanner to 
achieve the highest inspection quality. Three main factors, which influence the measurement 
accuracy of the LIDAR scanner, are (1) distance, (2) incident angles between the scanner and a 
target structure, and (3) angular resolution of the LIDAR scanner. Once the position and scan 
parameters of the LIDAR scanner are determined, a region of interest (ROI) covering the precast 
reinforcing bar cage was selected after a coarse scan. A fine scan was conducted over the ROI, 
generating a point cloud containing a set of 3D point, i.e., (𝑥 , 𝑦 , 𝑧 ), 𝑖 = 1, … , 𝑁, where 𝑁 is the 
number of total scan points. Note that the scanning and data acquisition was conducted 
automatically without human intervention. Once the position, scan parameters of the LIDAR 
scanner and ROI are manually determined prior to the data acquisition. The word "fully 
automated" used in this study implies that once the raw scan data becomes available, the proposed 
technique operates in a fully automated way for all data from data processing to quality assessment. 

5.4. Automatic Reinforcing Bar Detection Algorithm 1 
Before further data analysis, researchers denoised the scanned wingwall point cloud data and get 
rid of the noise. A total of 4,182,316 points was denoised to 489,484, only 11.7% of raw data. The 
commercial software CloudCompare was employed to reduce nonrelated data and only keep 
reinforcing bars. Additionally, the x and y axis of the point cloud was aligned with the direction 
of the reinforcing bar. Figure 9 below shows the flow chart of algorithm 1. The step-by-step 
description is sort points along a given axis, slice point cloud into j slices along axis, divide number 
of points by width of slice, find local maxima density results and the last one is plot resultant 
locations as rebar estimation. 

Figure 9. Flow Chart of Processing Algorithm 1. 

Table 4 shows the pre-processing of point cloud data. The four figures of this table show the data 
denoising results of point cloud model. The number of points in the original as-built point cloud 
is 4,182,316, the number of points after denoising is 2,783,811, the number of top layer point cloud 
model is 293,690 and the number of bottom layer point cloud model is 217,434. 
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 Number of   points in   the  original 

 cloud 
 as-built  point 

 Number of   points  after  denoising 

 3/22/2020 

 4,182,316  2,783,811 

  
 Number of   points  of  the  top  layer   Number of   points of   the  bottom layer   

 293,690  217,434 

  
 

                 
                   
                   

                 
                    

                  
               
               

                 
              

              

Table 4. Scanner Data pre-processing. 

The algorithm can be thought of as a one-dimensional density by depth approach. It seeks to obtain 
the point density along a given axis of the point cloud. To accomplish this, it begins by sorting the 
data along a given axis. Once the data has been sorted, it divides the points into bins of equal 
physical distance along the axis; these bins are referred to as "slices" or "layers". It divides the 
number of points in a slice by the width of the slice to obtain the average density within that slice. 
By taking a sufficiently large number of slices, the density of the data along an axis can be 
approximated as a smooth curve between the densities of the slices. Figure 10 shows the 
diagrammatic point cloud drawing of algorithm 1. The plots along each axis roughly shows the 
location of rebars. The peaks of x-axis and y-axis show the location of the projection of rebars 
location in the two-horizontal axis; the peaks of z-axis represent the two elevations corresponding 
to the two rebar locations of the top and bottom mesh, respectively. 

17 



 
 

 
       

               
              

               
                

                
                

 

                
              

                
                

                 
                 

             
                   
                

                

 
          Figure 11. Output of different axis reinforcing bar spacing plot. 

Figure 10. Diagrammatic Drawing of Algorithm 1. 

Reinforcing bar perpendicular to a given axis show up as locally dense regions in the 
corresponding density plot. By extracting these regions as "local maxima" within the density plot, 
the algorithm can obtain the average location of a given reinforcing bar perpendicular to the 
corresponding axis. Figure 11, Figure 12 and Figure 13 show results of the density plots. Figure 
11 shows the output of different axis reinforcing bar spacing plot. Figure 12 presents the derivative 
of output of different axis rebar spacing plots. Figure 13 shows the density plots overlayed point 
data. 

Lastly, researchers made a note of the difference between center to center spacing and clear cover. 
For the reinforcing bar, the algorithm identifies the distance between the centroids of their 
locations. For clear cover, however, the edge of the formwork needs to be calculated, not the 
centroid of the formwork wall (which the local maxima would yield). For this, we actually require 
the "toe" of the maxima associated with an edge. This "toe" will correspond to the closest "near 
zero" point in the derivative adjacent to the maxima itself. The algorithm can find this point by 
simply identifying the maxima associated with the formwork wall and following along the 
derivative curve until it hits zero (or near zero); this point will always be the toe of the slope 
associated with this maximum and will correspond to the edge of the concrete formwork wall. See 
Figure 12 for an example of these points plotted on their respective derivative of density curves. 
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Figure 12. Derivative of Output of different axis reinforcing bar spacing plot. 

Figure 13. Density plots overlay point data. 

Figure 14 shows the spacing of the two axis of the wingwall reinforcing bar cage according to the 
proposed algorithm. Figure 14 shows the spacing for side rebar of the rebar cage. The LIDAR 
measurement is calculated by MATLAB and marked by black number; the tape measurement 
marked by red number. Figure 14 shows the comparison result of LIDAR measurement and the 
tape measurement. 
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Figure 14. Reinforcing bar Locations Plotted Over Point Data with Measurements Labeled. 

Table 5 shows the comparison of the algorithm results using the LIDAR data with the spacing 
using the tape measurement. As shown in the table, the largest absolute error for X axis is 0.4 
inches, and the largest absolute error for Y axis is 0.6 inches. 

Table 5. LIDAR Measurement and Tap Measurement Comparison. 

X axis 
Tape 
(inch) 

LIDAR 
(inch) 

Error 
(inch) 

Y axis 
Tape 
(inch) 

LIDAR 
(inch) 

Error 
(inch) 

Spacing (1-2) 8.5 8.8 0.3 Spacing (A-B) 9.8 9.3 -0.5 

Spacing (2-3) 8.8 9.0 0.2 Spacing (B-C) 8.8 9.0 0.2 

Spacing (3-6) 8.8 9.1 0.3 Spacing (C-D) 9.5 9.0 -0.5 

Spacing (4-5) 9.5 9.4 -0.1 Spacing (D-E) 8.0 8.4 0.4 

Spacing (5-6) 9.3 9.2 -0.1 Spacing (E-F) 5.5 5.6 0.1 

Spacing (6-7) 8.8 8.8 0 Spacing (F-G) 7.5 7.6 0.1 

Spacing (7-8) 9.3 9.4 0.1 Spacing (G-H) 5.8 6.4 0.6 

Spacing (8-9) 8.8 8.6 -0.2 

Spacing (9-10) 8.3 8.5 0.2 

Spacing (10-11) 7.5 7.8 0.3 

Spacing (11-12) 8.3 7.9 -0.4 

The tolerances on reinforcing bar position, according to ACI 117, is the permitted variation from 
a given dimension—in other words, how far off the reinforcing bar is from what is shown in the 
drawings. For example, if the clear distance between the outside of a reinforcing bar and the face 
of a 6-inch-wide concrete beam is specified to be 2 inches, the tolerance allows it to be no less 
than l 5/8 inches. The tolerance on the position of longitudinal bars is much more relaxed: ±3 
inches. This is because the positions of the longitudinal bars are not critical, as long as the proper 
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cover is maintained, and the specified number of bars are included. The proposed algorithm can 
measure the spacing errors with less than 3 inches, therefore, is adequate for the measurement of 
longitudinal bars. 

5.5. Automatic Reinforcing Bar Detection Advanced Slicing Algorithm 
This section updated the algorithm based on the feedback from NMDOT experts, which was shown 
in a teleconference on August 2020. The updated research estimated the location of each rebar in 
every bay; hence each rebar has an associated position in each bay and direction. If one rebar is 
bent accidentally during construction, the projection algorithm may not detect that level of details 
of inner rebar bays. 

In order to increase the accuracy of the measurement algorithm, researchers advanced the 
algorithm by finding average of each cluster, get the reinforcing bar location of each bay. Figure 
15 shows the diagrammatic drawing of the advanced algorithm. As shown in the figure, the red 
arrows represent the spacing of each bay for the rebar cage in the automatic reinforcing bar 
identified by the data. 

Figure 15. Diagrammatic Drawing of Advanced Algorithm. 

Automatic reinforcing bar identification for X axis followed the steps like below: 

1. Automatic splicing in X direction in between peaks 

2. Measure automatic splicing 

3. Find the Y and Z locations of each reinforcing bar in every bay being measured 

4. Automatic measurement of Y axis and Z axis for all bays in X axis could be found 

Figure 16 shows the data processing of X axis. Figure 16 shows specifically one example of one 
bay automatic determination of Y and Z axis. By applying the same algorithm to Y axis, Automatic 
measurement of X and Z for all bays in Y axis, as shown in Figure 17. 
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Figure 16. Diagrammatic Drawing of Slicing X-Axis. 

Therefore, the automatic reinforcing bar identification algorithm for X axis and Y axis is shown 
in Figure 18. The value in blue color is the spacing of X axis, while the value in red color is the 
spacing of Y axis. This figure shows how the algorithm captures the slope in Z axis which can 
demonstrate that the algorithm is indeed able to measure the slope of the rebar in the field. 

Figure 17. Diagrammatic Drawing of Slicing Y Axis. 
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Figure 18. Spacing of each reinforcing bar along X and Y axis. 

Compared the LIDAR measurement value and the design drawing values the error of the 
construction reinforcing bar cage is gained, which is shown in Table 6. Table 6 lists all the spacing 
of the rebar cage, totaling 69 bays. The mean error value of LIDAR measurement and designed 
spacing for X axis is 0.49 inches, the mean error value of LIDAR measurement and designed 
spacing for Y axis is 0.46 inches. 

The advanced algorithm has proved the following functions: 

 Can find all the spacing of each cluster along X and Y axis. 
 Automatic values. 
 It was also computed for Z elevations. It was also calculated for the bottom cage. 
 It can be very beneficial for larger concrete decks. 
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 X 
 axis 

Bay  

 LiDAR 
 Measurement 

 (inch) 

Designed  
 (inch) 

Error  
 (inch) 

 Y 
 axis 

Bay  

 LiDAR 
 Measurement 

 (inch) 

Designed  
 (inch) 

Error  
 (inch) 

1  ○  A-B  9.37  9.00  0.37 

A  ○

 1-2  8.88  9.00  -0.12 

2  ○  A-B  9.40  9.00 0.40  2-3  8.27  9.00   -0.73 

3  ○
A-B   9.11  9.00  0.11  3-4  9.76  9.00  0.76 
B-C   8.78  9.00  -0.22  4-5  9.32  9.00  0.32 

4  ○
A-B   9.21  9.00  0.21  5-6  8.85  9.00  -0.15 
B-C   8.81  9.00  -0.19  6-7  9.20  9.00  0.20 

5  ○
A-B   9.10  9.00  0.10  7-8  8.96  9.00  -0.04 
B-C   9.06  9.00  0.06  8-9  8.46  9.00  -0.54 

 C-D  8.23  9.00  -0.77  9-10  7.55  9.00  -1.45 

6  ○

A-B   9.20  9.00  0.20 

B  ○

 2-3  8.41  9.00  -0.59 
B-C   9.11  9.00  0.11  3-4  10.06  9.00  1.06 

 C-D  8.64  9.00  -0.36  4-5  9.06  9.00  0.06 
D-E   4.90  5.00  -0.10  5-6  8.95  9.00  -0.05 
E-F   8.18  9.00  -0.82  6-7  9.22  9.00  0.22 

7  ○

A-B   9.10  9.00  0.10  7-8  8.9  9.00  -0.10 
B-C   9.23  9.00  0.23  8-9  8.82  9.00  -0.18 

 C-D  8.74  9.00  -0.26  9-10  7.43  9.00  -1.57 
D-E   4.70  5.00  -0.30 

C  ○

 4-5  9.40  9.00  0.4 
E-F   8.25  9.00  -0.75  5-6  8.95  9.00  -0.05 

8  ○

A-B   9.06  9.00  0.06  6-7  9.33  9.00  0.33 
B-C   9.30  9.00  0.30  7-8  8.87  9.00  -0.13 

 C-D  8.63  9.00  -0.37  8-9  8.81  9.00  -0.19 
D-E   4.94  5.00  -0.06  9-10  7.59  9.00  -1.41 
E-F   7.92  9.00  -1.08 

D  ○

 6-7  9.00  9.00  0 

9  ○

A-B   8.89  9.00  -0.11  7-8  9.04  9.00  0.04 
B-C   9.35  9.00  0.35  8-9  8.82  9.00  -0.18 

 C-D  8.63  9.00  -0.37  9-10  7.65  9.00  -1.35 
D-E   4.99  5.00  -0.01 

E  ○

 6-7  9.09  9.00  0.09 
E-F   7.85  9.00  -1.15  7-8  9.09  9.00  0.09 

10  ○

A-B   9.09  9.00  0.09  8-9  8.62  9.00  -0.38 
B-C   9.49  9.00  0.49  9-10  7.78  9.00  -1.22 

 C-D  8.30  9.00  -0.70 

F  ○

 6-7  9.09  9.00  0.09 
D-E   5.40  5.00  0.40  7-8  9.31  9.00  0.31 

 E-F  7.53  9.00  -1.47 
 8-9  8.47  9.00  -0.53 
 9-10  7.77  9.00  -1.23 

  Mean  value  of error   0.49  Mean  value  of error   0.46 
 

Table 6. LIDAR Measurement vs. Designed Measurement. 

24 



 
 

        
    

                
              

             
          

             
               

  

                                                                

  

                     
        

                       
             

  

 

                
                 

               

              
               

           

               
           

               
                

               
               

            

         
             

              
                 

             
                 

                
                 

               

5.6. Bridge Reinforcing Bar Construction Quality Scale: preliminary 
specifications using LiDAR 
This section includes work for Task 4 and Task 7. Task 4 need to establish preliminary 
specifications for QOQCQA. The PIs modified and responded the feedback from the experts of 
the NMDOT and Tran-SET. The authors established a bridge reinforcing bar construction quality 
scale and implemented this scale to the rebar construction quality. 

According to the ACI 117 specifications for bridge construction tolerances, the acceptable error 
for reinforcing bar placement is 0.5 inches. The researchers set the quality evaluation scale as 
equation 1. 

𝑆𝑐𝑎𝑙𝑒 = 100 − 𝑒𝑟𝑟𝑜𝑟 ∗ 100 (Eq.1) 

𝑆𝑐𝑎𝑙𝑒 > 50 (𝑔𝑜𝑜𝑑) 

If the error is smaller than 0.5 inches, the scale will be larger than 50. The higher the score is, the 
better the construction quality is. 

According to the mean error in table 6, we can get the scale for X axis is 51, the scale for Y axis 
is 54. The reinforcing bar construction quality in the floor plan is good. 

𝑆𝑐𝑎𝑙𝑒 = 100 − 𝑒𝑟𝑟𝑜𝑟 ∗ 100 = 100 − 0.49 ∗ 100 = 51 

𝑆𝑐𝑎𝑙𝑒 = 100 − 𝑒𝑟𝑟𝑜𝑟 ∗ 100 = 100 − 0.46 ∗ 100 = 54 

In addition, the reading of the elevation placement location of each reinforcing bar and the mean 
value of elevation error compared with the design value is 0.37 inches. The scale calculated by Eq. 
1 is 63, which means the vertical placement quality of the reinforcing bar is good. 

By applying the same automatic reinforcing bar identification algorithm, the bottom layer of the 
scanned wingwall cage quality is good. The quality scale for horizontal reinforcing bar location 
is 60, the scale for vertical reinforcing bar location is 72. 

The conclusion for the advanced algorithm is that with the increasing use of LIDAR scanning 
technology, rapid and automated bridge construction quality assessment technologies are quickly 
becoming a reality: benefiting from its operation speed and high data resolution, point cloud data 
from 3D scanner can be automated for structural components detection. In this paper, a case study 
has been presented to demonstrate the capabilities of 3D LIDAR scan to quantify the spacing 
between reinforcing bars. The most significant advantages of using 3D LIDAR scan are: (1) no 
interference to construction operation and (2) permanent record of the existing conditions. 

5.7. Bridge Reinforcing Bar Construction Inspection in Route 66 
This section summarizes the bridge inspection conducted in Route 66 to explore the 
implementation of the new technology in real scenarios. Given limitations by COVID, the team 
had to wait for approval from UNM to access this bridge with the same technology tested in 
CoreSLAB, which was possible in November 2020. NMDOT and UNM discussed since August 
2020 that even COVID was a challenge, it would be beneficial to add a bridge scanning when 
possible in this project. UNM made this a priority. On October, NMDOT called the PI informing 
them of a bridge being available for scanning and UNM arranged the approvals with the School of 
Engineering, as well that started studying bridge drawings and specifications to test the LiDAR in 
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the field. NMDOT and UNM also discussed the barriers for implementation before, during and 
after the scanning to complete the tasks of this research in the context of new rebar inspection 
specifications. From NMDOT’s perspective, the LiDAR scanning and the results in the bridge 
indicate that in the future this technology can be included with some changes in the current contract 
documents and that are discussed at the end of this chapter. 

The bridge was in the historic Route 66, in the East-West direction, in the South side of the existing 
road and 20 miles East of Tutumcari. The PI coordinated with NMDOT bridge and construction 
crews to ensure safety precautions were always prioritized. Snow storms delayed the inspection to 
November 2nd 2020 (Monday.) The drawings informed the scanning preparation. The images of 
the bridge and the scanning results are shown in the next page. 

Figure 19. Tutumcari bridge: (top) drawings; (bottom) field construction. 
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(a) (b) 

(c) 

Figure 20. Photo and Point Cloud models of Bridge Construction site in Route 66: (a) Photo of bridge 
construction site; (b) Point cloud model of Bridge Construction site; (c) Detail elevation of rebar view. 

Figure 21 shows the reinforcement data processing of the bridge. The PIs used the tape 
measurement collected rebar spacing at the corner of the bridge, which is shown in Figure 21 (a). 
The LIDAR data of the spacing is shown in Figure 21 (b). Figure 21 summarizes the comparison 
example of the first rebar in the transverse direction of the top mat in the South East corner of the 
concrete deck using the proposed methodology. The LiDAR data also finds other formwork 
elements such as the four anchors near the edge and the railing used for the concrete pour machine. 
What is more important is the accuracy of the LiDAR data obtained using this innovative, practical, 
and implementable approach. The results of comparing the rebar in the field with the rebar in the 
LiDAR exceeded expectations, even with the bridge from NMDOT in the field. Table 7 
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summarizes the comparison with both sets of data. The average error with a preliminary estimation 
of the LiDAR comparison is below 0.50 inches, but based on the precast plant experiment this 
accuracy can be improved with slower scanning. This will be also discussed in the next section. 

Rebar spacing 
LiDAR check 

Rebar spacing 
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Figure 21. Rebar spacing of bridge: (a) photo of tape measurer; (b) LiDAR data spacing 

Table 7. Comparison of Rebar spacing of bridge using tape measurement and LIDAR data. 

Spacing (left - right) Tape (inches) LIDAR (inches) Error (inches) 
6.14 5.85 0.29 
6.00 5.50 0.50 
2.51 2.36 0.15 
8.51 8.20 0.31 
7.95 7.04 0.91 

Average error 0.43 

5.8. Updated Specifications based on Bridge Inspection 
This section summarizes the proposed specifications based on discussions with NMDOT on the 
use of field data to inform decisions on rebar location prior to concrete pour. The research team 
discussed both with NMDOT and the consulting experts on rebar inspection the importance of 
conducting a scanning prior to the concrete pour to produce a permanent record of the rebar for 
future inspections or activities in the field. The update of specifications on DOTs using this 
LiDAR inspection automatically obtained in the field should include the following points, 
according to the feedback from NMDOT in this project in January and February of 2021: 

- The LiDAR equipment is already accepted as a tool in NMDOT and it is expected to 
increase its relevance in the years to come. 
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- The results of this research support further use and investigation of using LiDAR as a 
tool for permanent record of the bridge construction. 

- The analysis of the data from the scanning takes excessive time and it would be of 
interest to the specifications to specifically indicate the time restrain on scanning and 
informing the contractor on 

o the spacing 
o the accuracy 
o the score 
o the required action (pass, not pass, rectify, pour concrete, stop) 

- The time of the analysis in the field is of top priority for further inclusion of LiDAR in 
the standard specifications. The officer from NMDOT indicated that their concern is that 
they have to wait one day to receive the scores. 

- The solution of cloud computing was discussed as an option, but there are concerns on 
infrastructure enabling to do this in remote bridges for practical specifications. 

The PhD student therefore has submitted the results reported herein to one journal paper which is 
currently under review, and preparing two new journal papers. The 2nd journal paper emphasizes 
the accuracy of the method from a data science perspective in the bridge data. The 3rd journal paper 
emphasizes the quantification of quality and its implementation in DOTs specifications, using the 
results of this project. 

6. CONCLUSIONS AND FUTURE RESEARCH 

The overall objectives of this project were to investigate the application of LIDAR technology to 
help automatically is going to measure the 3D reinforcement layout during bridge construction. 
The overall object was decomposed into four research objectives. The first research objective 
included testing if LIDAR can collect reinforcing data in the field. The second research objective 
included quantifying the ability of LiDAR to inform QCQA during construction inspections. The 
third research objective included identifying challenges of using LiDAR for QCQA in NMDOT 
(technical and implementation). The fourth objective included proposing specifications that would 
inform how to use LiDAR for construction inspection of reinforced concrete construction. The 
solution approach to address these four research objectives was divided into two project stages. 
The first two research objectives corresponded to literature review and algorithm developing. A 
literature review effort was conducted to gain insights from research studies that LIDAR 
technology for collecting bridge construction data in the field and informing the inspectors in real 
time. The third and fourth research objectives corresponded to the case study and quality 
evaluation standard. A field test study was conducted to address the research question regarding 
to the applicability of 3D models developed from LIDAR data to help identify the reinforcing bar 
of bridge wingwall during the construction. 

The results of this research are summarized in the following sections, those related to the technical 
development of new LIDAR technology that are related to the transportation industry, and other 
outcomes because of education and training. Therefore, the technical findings achieved with this 
research can be summarized in the following categories: 
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 Collaboration with owners of infrastructure: workshop, industry feedback, and 
opportunities for LIDAR technology development based on practical implementation 
in industry. 

 Development and validation of LIDAR technology applications in comparison with 
current inspection tools and procedures. 

 Teaching and training in College level of LIDAR technology and feedback and interest 
from students to learn about LIDAR technology for transportation infrastructure. 

6.1. NMDOT and LIDAR Technology 
The result of the various LIDAR technology in bridge inspection progress in the year has 
contributed to a demonstration of LIDAR technology to NMDOT on its potential to assist bridge 
inspectors, which was conducted in NMDOT 2020 Paving and Transportation Conference January 
9th 2020. Dozens of bridge inspectors attended a practical presentation about the use of LIDAR 
technology for bridge inspections. The main component of this activity was the dialog from the 
NMDOT's perspective of what would be useful as a practical application of LIDAR technology 
for their day-to-day activities. Figure 19 shows the first slide of the presentation summarizing the 
results of LIDAR technology to more than 300 transportation technicians and engineers in 
Albuquerque, NM, in January 9th , 2020. The feedback from this presentation was very positive in 
terms of the interest from NMDOT and engineering firms in advancing this technology towards 
automatic bridge construction monitoring. 

Figure 22. NMDOT Demonstration on LIDAR technology (January 9st, 2020). 
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6.2. Industry Impact of LIDAR Project 
The result of the various LIDAR technology in bridge inspection progress has collaborated with 
leaders in CoreSLAB Structures (CONN) Inc. Since 1975, CoreSLAB Structures is a premier 
producer of precast/prestressed concrete products. Over the last four decades, they have emerged 
as a major supplier of structural, architectural and hollow core solutions to markets in Canada and 
the United States. Researchers talked to the manager of CoreSLAB Structures, they showed great 
interest in the LIDAR application in bridge construction inspection quality control and quality 
assurance. Researchers conducted testing using GeoSLAM Ltd Mobile LIDAR scanner of a bridge 
wingwall reinforcing bar cage in the construction field of CoreSLAB in March 22nd , 2020. The 
scanning result was used to develop new software that can help construction inspectors of the 
future using LIDAR equipment during construction. Figure 20 shows the group picture of 
collaboration with Industry (March 22nd, 2020). From the left to right is the research group 
member PhD student Xinxing Yuan, the undergraduate student Odey, the manager of CoreSLAB 
Matt Manning, and high school student Shuang. 

Figure 23. Collaboration with Industry (March 22nd, 2020). 

6.3. Inaugural SMILab Workshop (SMIWeb) supported by Tran-SET 
The first-ever SMIWeb workshop, July 9th, 2020, was directed at researchers, students, and 
professionals from industry interested in learning about new technologies with practical 
implementation in smart structures technologies. Senior researchers presented their unique 
projects and contributions to the engineering field. The emphasis was to increase awareness about 
future directions in smart structures that can be of interest in the next decade. LIDAR for bridge 
inspections was presented by Ph.D. student Xinxing Yuan. The 1st SMIWeb workshop supported 
by TRANSET attracted more than 100 researchers and professional engineers worldwide. Figure 
21 shows the webinar pictures. The left is the screenshot of 108 attendance zoom profile, the right 
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picture is Xinxing Yuan’s presentation of “Bridge Construction Monitoring using LIDAR for 
Quality-Control, Quality Assurance (QCQA)”. 

Figure 24. Shared Research on LIDAR Technology in SMIWeb (July 9th, 2020). 

6.4. Communicating and Training LIDAR Technology 
The LIDAR team is adapting LIDAR's ability to measure and quantify changes in structures in 
real time to attract other sources of support to research. The research on LIDAR was communicated 
in Women's Issue in Transportation in California, Irvine. See Figure 22. Figure 22 shows the 
picture of researcher communicated with other women researchers of LIDAR project. In this 
Figure, the PhD student is standing with the chairman Therese McMillan and other committee 
members during the conference. As seen in this image, the participation of the PhD student 
benefitted from interactions with nationwide leaders in transportation that can become critical for 
post-PhD career opportunities. Additionally, the PhD researcher shared the LIDAR technology 
with several universities included two senior PhD students from Carnegie Mellon University and 
University of Michigan, respectively, PhD student from Virginia Polytechnic Institute and State 
University, and PhD student from University of Nebraska-Lincoln. Figure 23 shows the image of 
the researcher shared with the LIDAR research with other PhD seniors. Figure 24 shows the 
presentation of the LIDAR technology to around 200 Menaul school students. In both figures it is 
evident that the PhD student is highly involved in the bridge monitoring community by sharing 
her research with other PhD students and hosting them during their visit to UNM and SMILab, 
which will be beneficial for her career during and after PhD studies. Similarly, the PhD student is 
committed to serve the local community in Albuquerque and specifically, she drove to their school 
to encourage them to pursue a career in engineering. It is critical to the mission of the University 
to have an impact in the youth and inspire minorities and female students to believe in themselves 
to pursue a career in transportation. This was one on the objectives of this project and the figures 
show these events. 
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Figure 25. Communicated with other women researchers of LIDAR project. 

Figure 26. Communicated the LIDAR research with other Ph.D. seniors. 
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Figure 27. Presented the LIDAR technology to Menaul school students. 

6.5. Patent Innovation 
A patent has been approved on the LIDAR technology titled "The Automatic Quality-Control 
Quality-Assurance Inspector (AQQI)" based on this project. UNM Rainforest Innovations has filed 
intellectual property on this exciting new technology. Market application of LIDAR technology 
would be 

 US Department of Transportation (USDOT) 
 Construction Project Inspection 

o Reinforcing bar Inspection 
o Construction Progress 
o Quality Control/Quality Assurance 
o Automatic determination of strength quality during construction using real-time 

structural capacity using exact reinforcing bar layout in the field during construction 
 Other automatic applications for LiDAR include: 

o Assess the condition of assets in construction 
o As-built mapping and documentation 
o Situational awareness for vehicle navigation 
o Inundation/flood modeling 
o Landslide monitoring/modeling 
o Erosion monitoring/modeling 
o Automatic accident scene documentation 
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6.6. Future Research 
Researchers are going to use a ZEB Horizon with quick release UAV mount to collect the bridge 
data in the field construction site. The UAV with LIDAR scanner can collect 3000,000 data points 
per second from the bridge, without need for GPS. The direct involvement of the bridge group 
from NMDOT will guarantee the practical quantification of QAQC of bridges in DOTs using new 
technologies Field Implementation. Figure 25 shows the UAV SLAM LIDAR scanner collect the 
data in the field bridge construction site. For the real bridge construction site, the dimensions of 
the rebar cage are hundred feet, there are dozens of constructions works work together in one site. 
The UAV SLAM can collect the big rebar cage in a short time by flying around the rebar cage. 

Figure 28. UAV SLAM LIDAR Scanner Data Collection. 

Researchers tried to use low-cost sensors to inspect the reinforcing bar cage in the laboratory. 
Azure Kinect D.K. is a developer kit with advanced Artificial Intelligence (AI) sensors for 
sophisticated computer vision and speech models. Designed for versatility, it combines an 
advanced depth sensor and spatial microphone array with a video camera and orientation sensor— 
with multiple modes, options, and SDKs. Azure Kinect sensor only cost hundreds of dollars. The 
scanning range needs to be improved for field testing. Figure 26 shows the low-cost sensor Azure 
Kinect. The left is the Azure Kinect sensor in the sensor box, the right picture shows the PhD 
student wearing the sensor. Figure 27 shows the laboratory validation by Azure Kinect sensor in 
CARC, UNM. The left picture of Figure 27 is the handmade bar cage, the right picture is the Azure 
Kinect sensor scanned point cloud model of this handmade bar cage. Figure 28 is the field test of 
Azure Kinect sensor in the CoreSLAB. The left picture of Figure 28 is the researcher hold the 
sensor at the corner of the bridge rebar cage to scan the rebar data, the right picture of Figure 28 is 
the detail of bridge rebar cage, Azure Kinect sensor and operation laptop. 
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Figure 29. Azure Kinect sensor. 

Figure 30. The laboratory validation by Azure Kinect sensor in CARC, UNM. 

Figure 31. Field Testing using Azure Kinect scanner in CoreSLAB. 
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	EXECUTIVE SUMMARY 
	EXECUTIVE SUMMARY 
	This project developed and implemented a methodology which measured construction progress and compared it with the projected 3D shape, then quantifying the difference. The results of this project supported the development of DOT standards which can positively impact near future bridge construction documents. The participation of experts in infrastructure maintenance and LIDAR sensing within this project enabled students to get exposed to industry careers related to infrastructure management and maintenance 
	The New Mexico Department of Transportation (NMDOT) was interested in exploring new technology available and implementing it in the Quality-Control Quality-Assurance (QCQA) during the concrete pour and concrete finishing phases of bridge construction. There are no 3D requirements in the form of LIDAR measurements satisfying QCQA standards for the constructed concrete structures (especially for bridge decks). According to NMDOT, the current QCQA requirements are limited to the measurement of discrete points.
	State departments of transportation are facing three related problems without the mentioned technology: (1) the quality of the construction is not comparable across different projects, and errors may be carried over without being noted causing future costs, or unsafe structures; (2) high quality construction projects cannot be rewarded, and low-quality projects go unnoticed; (3) since errors cannot be measured, the standards cannot be changed or imposed. 
	With the proposed automation of a measuring technique and the objective score that is determine with the data collected on near real-time, new requirements can be imposed, and the quality of the constructed surface as compared with the design surface can be increased. Consequently, from the strong interest of the NMDOT in this topic alongside the experience of the PIs on bridge design, bridge construction, field inspection, and LIDAR technology yielded the results with impact both in research and in industr
	1. INTRODUCTION 
	1. INTRODUCTION 
	Bridges play a vital role in the north American transportation networks (1). There are more than 614,387 bridges in the United States, which are mostly owned by state or local governments (2). The highest percentage of highway bridges were built in the late 1950s and early 1970s, almost 40% bridges have been in use more than 50 years (2). In recent years, the number of bridges with structural defects has been increasing. Expenditures for bridge maintenance and replacement have risen, accounting for $10.5 bi
	Figure
	Figure 1. LIDAR to monitor construction activities. 
	1.1. Background 
	1.1. Background 
	The New Mexico Department of Transportation (NMDOT) was interested in exploring new technologies available and implementing these in the quality-assurance quality-control (QAQC) process of bridge construction, in particular during concrete pour and concrete finishing (16-17). If the entire volume/surface could be compared with the designed profile (in 3D) then the quality of the finished surface would be quantified, and a score could be associated with the quality. 

	1.2. Research Methodology 
	1.2. Research Methodology 
	This research project employed a methodology using LIDAR. LIDAR was tasked to measure construction progress and compare it with the projected 3D shape, quantifying the difference (1820).This project proposed the implementation of this methodology for the development of DOT standards that can be added in near future bridge construction documents. The PI has discussed this project closely with Kathy Crowell from the NMDOT bridge design group, and they agreed to also support this research. 
	-

	This project sought to increase the technical collection of data during construction (21-26).A multi-disciplinary team from the University of New Mexico (UNM) collaborated with NMDOT to measure the 3D reinforcement layout during bridge construction using LIDAR. The approach proposed by this UNM team, supported by the input of infrastructure owners' guarantees, the broader impact of this research has been attained. Figure 2 shows the rebar construction process in the field conducted by field technicians, whe
	Figure
	Figure 2. Bridge reinforcement during construction. 

	1.3. Future Funding Proposals on LIDAR Technology for Bridge Monitoring 
	1.3. Future Funding Proposals on LIDAR Technology for Bridge Monitoring 
	The results of this project exhibit the significant impact LIDAR technology has on the promotion of monitoring and evaluation of bridge systems (27-29). Researchers redefined this technology to empower bridge construction inspectors in acquiring measurements and quantifications of the condition of bridge reinforcement during construction (30-32). This empowerment enables a potential standardization of this technology across the NMDOT and the bridge construction industry (33). Furthermore, the results of thi
	The results of this project exhibit the significant impact LIDAR technology has on the promotion of monitoring and evaluation of bridge systems (27-29). Researchers redefined this technology to empower bridge construction inspectors in acquiring measurements and quantifications of the condition of bridge reinforcement during construction (30-32). This empowerment enables a potential standardization of this technology across the NMDOT and the bridge construction industry (33). Furthermore, the results of thi
	preliminary data will be submitted to the USDOT, Federal Railway Administration (FRA), National Science Foundation (NSF), and USDOT pool funds. 

	Nonetheless, this research's risk-reward ratio is low since the collaborators' quality increases the impact of the study in two different departmental units at UNM. Additionally, the strong partnership with the NMDOT guarantees the high impact of this research and allows UNM students to collaborate with a different institution throughout the project, and more specifically, to interact in researching outside of the state of New Mexico, broadening the potential impact for regional students. Another aspect of 


	2. OBJECTIVES 
	2. OBJECTIVES 
	This section presents the objectives obtained for this project. The objectives of this research were divided into two phases: research phase and implementation phase. 
	2.1. Research Phase 
	2.1. Research Phase 
	The accomplishment of the project objective(s) in the Research phase required the following tasks: 
	1. 
	1. 
	1. 
	Researchers have established with NMDOT a prototype route for choosing the LIDAR needs and specifications required for this project. 

	2. 
	2. 
	In collaboration with NMDOT, elaborated scientific hypothesis on preliminary testing and validation in the CoreSLAB structure company. 

	3. 
	3. 
	Developed an experiment in the CoreSLAB and reported the results to NMDOT. Researchers tested and checked the new LIDAR technology to the bridge wingwall reinforcing bar measurement using input from objectives 1 and 2. 

	4. 
	4. 
	Researchers involved both students and industry in 3. 

	5. 
	5. 
	Established preliminary specifications for bridge deck QOQAQC. 

	6. 
	6. 
	As part of the research objectives, researchers also shared the LIDAR technology measurement algorithm with other universities, industry, and owners. 

	7. 
	7. 
	At the end of the project, the researchers conducted one workshop with NMDOT and presented the achievements to NMDOT project review committee. 

	8. 
	8. 
	In collaboration with NMDOT, selected one bridge of interest to test the outdoor 


	implementation and write the results. By the end of this project, researchers have finished all the research objectives but field bridge construction experiments and the update of specifications because of the COVID-19 epidemic. When safely so, after COVID-19 has lowered the concern of safety, the researchers will test the bridge construction and validate it with other means of measurement. Subsequently, they will compare these results and the specifications requirements between the field research on a brid

	2.2. Implementation Phase 
	2.2. Implementation Phase 
	The results of this research have been shown to infrastructure owners both in a webinar and in the workshop. Infrastructure owners have expressed their interest in committing resources to further developing LIDAR technologies to inspect transportation infrastructure, more specifically, NMDOT. The following implementation steps are: 
	1. 
	1. 
	1. 
	Development of an algorithm to use LIDAR point cloud 3D data for bridge deck inspections demonstrated in laboratory size settings to NMDOT during the workshop. 

	2. 
	2. 
	Benchmarking of the results of using the LIDAR point cloud 3D data processing algorithm comparing benefits for field implementation: safety, accuracy, and time (reinforcing bar spacing measurement, shown to NMDOT). 

	3. 
	3. 
	The teaching of LIDAR scanner technology to undergraduate students with field experiments (March 2020). 

	4. 
	4. 
	Cooperating and communicating the LIDAR sensing technology and point cloud data processing with Virginia Polytechnic Institute and State University and the University of Nebraska-Lincoln. 

	5. 
	5. 
	Transferring the research developments with the bridge engineer in NMDOT and construction inspectors in CoreSLAB and the technical staff in LIDAR technology company GeoSlam. 

	6. 
	6. 
	Trimester reports to panel review to receive feedback in the technology. 

	7. 
	7. 
	Demonstration at the international webinar: the 1Smart Management of Infrastructure Workshop. 
	st 



	The proposed research equipment and analysis methods provided evidence that with LIDAR technology, inspectors increase their ability to quantify bridge construction quality objectives faster, more accurate, and more safely. The project’s Results were presented to the industry, including, but not limited to: Federal Railway Administration (FRA), US Department of Transportation (USDOT), and NMDOT. In the implementation phase, the objective was to identify the needs of industry for the practical implementation


	3. LITERATURE REVIEW 
	3. LITERATURE REVIEW 
	This section presents a literature review to covers two topics: bridge reinforcing bar placement evaluation and the potential of LIDAR technology as automatic data capturing visualization tool. The reviewed literature includes books, journal papers, technique reports, conference papers, thesis, and dissertations. 
	3.1. Bridge Reinforcing Bar Placement Evaluation 
	3.1. Bridge Reinforcing Bar Placement Evaluation 
	3.1.1. Specifications for Bridge Reinforcing bar Construction 
	3.1.1. Specifications for Bridge Reinforcing bar Construction 
	This section first discussed the importance of bridge reinforcing bar placement. According to Standard Specifications for Highway and Bridge Construction (42), the general placement guidelines for bridge reinforcing bar are recommend: 
	 
	 
	 
	The Contractor shall firmly support reinforcing bars in deck slabs with approved devices spaced at intervals not exceeding 3.3 ft. The Contractor shall securely tie down reinforcing bar mats in Bridge decks to girders and forms to prevent upward movement during concrete placement. 

	 
	 
	The Contractor shall not allow the spacing between adjacent reinforcement bars to vary more than 1/2 inch (13mm) from the dimensions shown in the Contract. 

	 
	 
	The Contractor shall place and maintain reinforcement bars within 1/4 inch (6mm) of the vertical dimensions shown in the Contract. 

	 
	 
	The Contractor shall not allow the concrete cover over the top layers of reinforcement to be less than two (2) inches. 

	 
	 
	The Contractor shall check the top elevation of the reinforcement unit before and after placing the concrete. If the reinforcement unit is not maintained within the specified tolerances, the Contractor shall make corrections. 


	According to Standard Specifications for Highway and Bridge Construction (NMDOT, 2019 edition), the checking guidelines for bridge reinforcing bar are recommend: 
	 
	 
	 
	Clearances and respective tolerances for bridge deck reinforcing must be given special attention when checking. The Contractor shall place bottom reinforcing bars with a minimum cover of one (1) inch. Except in cases where reinforcing bars are not parallel to form corrugations, the Contractor shall center the bars (approximately) in the bottom layer of the primary reinforcement over the valleys of the forms when necessary to achieve the minimum concrete cover. The Contractor shall not allow the distance fro

	 
	 
	Clearance of bottom reinforcement from the bottom of the slab must be given special attention when checking. The clearance shall be the nominal clearance shown on the plans with a tolerance of minus 3 mm (1/8 inch) and plus 6 mm (1/4 inch). 

	 
	 
	Distance from the bottom of the slab to the top of the top mat of reinforcement must be given special attention when checking. When all top reinforcing is of the same diameter, the nominal distance is to be maintained with a tolerance of minus 6 mm (1/4 inch). 



	3.1.2. Reinforcing Bar 
	3.1.2. Reinforcing Bar 
	The Contractor shall provide deformed bars in accordance with AASHTO M 31, Grade 60, or ASTM A706, Grade 60, at the nominal dimensions in accordance with Table 540.2.1:1 "Nominal Dimensions of Reinforcement." Table 1 shows the weight and dimensions of reinforcement bars corresponding to each bar size. AASHTO M31 Grade 40 may be used for Reinforced Concrete for Minor Structures (Section 515 only). The installation of the reinforcing bar is critical for the success of the overall bridge. 
	Table 1. Nominal Dimensions of Reinforcement. 
	Bar size Nominal Weight (lb/ft) Diameter (inch) No. 3 0.376 0.375 No. 4 0.668 0.500 No. 5 1.043 0.625 No. 6 1.502 0.750 No.7 2.044 0.875 No. 8 2.670 1.000 No. 9 3.400 1.128 No. 10 4.303 1.270 No. 11 5.313 1.410 No. 14 7.650 1.693 No. 18 13.600 2.257 

	3.1.3. Current Bridge Reinforcing Bar Placement Evaluation 
	3.1.3. Current Bridge Reinforcing Bar Placement Evaluation 
	Previous research reviews that develop an efficiency real-time information on work-face operations can help engineers and managers make a quick grade decision. 
	One inspection method of the reinforcing bar placement before the concrete pour is a visual inspection by the clerk of works or equivalent. Using a steel tape to check the cover thickness will, and any spacers that have fallen off or been broken will need to be replaced. In addition, there is also a surveyor who will check the steel level according to the required level on the design drawing. If these levels are satisfactory, and the clerk has completed the visual checks, the pour will proceed. Figure 3 sho
	One inspection method of the reinforcing bar placement before the concrete pour is a visual inspection by the clerk of works or equivalent. Using a steel tape to check the cover thickness will, and any spacers that have fallen off or been broken will need to be replaced. In addition, there is also a surveyor who will check the steel level according to the required level on the design drawing. If these levels are satisfactory, and the clerk has completed the visual checks, the pour will proceed. Figure 3 sho
	measure the rebar cage bay by bay, and it normally need more than one people to conduct this measurement. One people hold the tape on the rebar surface and the other one help to record the measurement. 

	Figure
	Figure 3. Bridge reinforcement placement inspection during construction. 
	The quality and durability of bridges depend heavily on the quality control during construction, particularly on the quality of reinforcing bar placement. At present, bridge inspection mainly uses visual inspection and manual defect measurement. However, manually inspect the reinforcing bar location is a time-consuming, expert-dependent and error-prone procedure. Extracting necessary information about the number, location, and size of the reinforcing bar is a major task for bridge inspectors. The most commo
	3.2. LIDAR Sensor for Transportation Infrastructure Applications 
	Currently, LIDAR (Light Detection and Ranging) is being used to collect large amounts of data that can be used to reconstruct 3D cloud points with high fidelity. However, to date, there is no capability for collecting 3D clouds of data that can be used to inform about the quality of the reinforcing bar layout in the real-time or practical level of detail. If LIDAR scanning would be accessible and simplified to this application, the owner and the engineer would be able to quantify at the site automatically a
	Ongoing research has already started, and it is being funded by Tran-SET center of transportation. Research to date includes a literature review of existing LIDAR technology in academia and industry and preliminary software familiarity of the supported student. The preliminary stage has also identified that the emphasis of this support will be in the practical implementation of LIDAR data collection in the field so standards can be made that can be used for the construction environment and schedules. The em
	Ongoing research has already started, and it is being funded by Tran-SET center of transportation. Research to date includes a literature review of existing LIDAR technology in academia and industry and preliminary software familiarity of the supported student. The preliminary stage has also identified that the emphasis of this support will be in the practical implementation of LIDAR data collection in the field so standards can be made that can be used for the construction environment and schedules. The em
	processing that enables a quick return of information about the reinforcement quality in the field in real scenarios of construction. A preliminary literature review has identified that the top reinforcing bar is of higher interest and also different reinforcing bar types in terms of requirements for repeatability of the proposed methodology across projects. 

	The use of laser scanning in construction has been documented widely in various studies. Tang, P., Huber, D., et al. have reviewed related techniques on the automatic reconstruction of as-built building information models from laser-scanned point clouds in 2010. Many other researchers have implied a laser scanner on the quality control of bridge deck construction, bridge damage evaluation, and post-disaster assessment. However, the use of laser scanning to locate reinforcing bar prior to pouring concrete ha



	4. METHODOLOGY 
	4. METHODOLOGY 
	This section covers the completion of two tasks at the beginning of the project that are essential for the practical roadmap implementation with the NMDOT. For Task 1, the PIs established with NMDOT a prototype route for choosing the LIDAR needs and specifications required for this project. For Task 2, the PIs collaborated with NMDOT to elaborate scientific hypothesis on preliminary testing and validation in the laboratory. 
	4.1. Establish with NMDOT a prototype route for choosing the LIDAR needs and specifications required for this project 
	LIDAR (Light Detection and Ranging) is a scanning laser technology that can collect 3D point cloud data of objects. A LIDAR system (which can be installed on anything, from an airplane to a simple tripod) emits up to 1 million pulses per second in a scanning mode, and each point can hit the nearest line of sight target. The light reflected back to the scanner is measured, and the distance is calculated based on the speed of light. Figure 4 shows the essential components of LIDAR system. Generally, as shown 
	Figure
	Figure 4. Basic Components of LIDAR System. 
	The following characteristics of LIDAR exhibit its potential to be used in the transportation systems. 
	 
	 
	 
	Only technology for detailed remote sensing of structure obscured by vegetation. 

	 
	 
	Works at night. 

	 
	 
	Easy to develop and apply evaluation standards. 

	 
	 
	Combines surveying, imaging and high-speed 3D scanning in one revolutionary solution can be used for structural inspection. 

	 
	 
	Detailed standards through American Society for Photogrammetric Engineering and Remote Sensing (ASPRS). 

	 
	 
	Widely deployed by transportation agencies (trusted) and survey companies. 

	 
	 
	Available in a variety of form factors to meet mission requirements (vehicle mounted, pole mounted, UAS airborne, manned airborne). 


	LIDAR scanner equipment can be useful tools during bridge reinforcing bar construction inspections need high resolution and high accuracy. Table 2 presents a list of relevant popular LIDAR scanners in the marketplace. The popular LIDAR scanners in the market have high accuracy and light-weight. The scanner’s brand is FOCUS350, Lecia Station P40, Leica S Station C10 and Trimble X7 3D. They have the similar shape design and scanning range is up to 300 m except Trimble X7 3D, the measuring accuracy is millimet
	S 

	Table 2. Popular LIDAR Scanner. 
	LIDAR Brand 
	LIDAR Brand 
	LIDAR Brand 
	FOCUSS 350 
	Leica Station P40 
	Leica S Station C10 
	Trimble X7 3D 

	Appearance 
	Appearance 
	TD
	Figure

	TD
	Figure

	TD
	Figure

	TD
	Figure


	Scanning range 
	Scanning range 
	0.6m -350m 
	0.4m -270m 
	0.1m -300m 
	0.6m -80m 

	Measuring Accuracy 
	Measuring Accuracy 
	+/-1mm 
	+/-1.2mm 
	2mm 
	2mm 

	Angular 
	Angular 
	19" vertical; 
	8" horizontal; 
	12" horizontal; 
	21" horizontal; 

	Accuracy 
	Accuracy 
	19" horizontal 
	8" vertical 
	12" vertical 
	21" vertical 

	Field of view 
	Field of view 
	360° ×300° 
	360° ×290° 
	360° ×270° 
	360° ×282° 

	Power supply 
	Power supply 
	19 V 
	24V DC, 10-240 V 
	15 V DC, 90 – 260 V 
	Rechargeable Li-

	TR
	AC; Battery 
	AC 
	lon battery 11.1V, 

	TR
	6.5Ah 

	Data storage 
	Data storage 
	32 GB 
	256GB internal solid
	-

	80 GB onboard solid
	-

	256 GB Solid State 

	capacity 
	capacity 
	state drive (SSD) or 
	state drive (SSD) or 
	Drive (SSD), 

	TR
	external USB derive 
	external USB device 
	(512GB or more for 

	TR
	best performance) 

	Weight 
	Weight 
	4.2Kg 
	12.25Kg 
	13 Kg 
	5.8 Kg 

	(W×D×H) mm 
	(W×D×H) mm 
	230 × 183 × 103 
	238 × 358 × 395 
	238 × 358 × 395 
	178 ×170 ×353 


	After comprehensive consideration and discussion with NMDOT on their needs for LIDAR in the field, informed by a field visit to a bridge construction on November in 2019, researchers decided to utilize the LIDAR scanner from GeoSLAM. The product model is ZEB HORIZON. This scanner is great for indoor and outdoor use, including spaces where features are positioned further apart. Moreover, it is lightweight, simple to use, fast to capture and easy to process, making it even more desirable. The technical specif
	Table 3. ZEB HORIZON Technical Specification. 
	Range 100m FOV 360° ×270° Protection class IP 54 Processing Post Data logger carrier Backpack or shoulder strap Scanner weight 3.7kg Colorized point cloud  Intensity  Referenced imagery  Scanner points per second 300,000 No. of sensors 16 Relative accuracy 1 -3 cm Raw data file size 100-200MB /min ZEB HORIZON Scanner 
	4.2. In collaboration with NMDOT, elaborate scientific hypothesis on preliminary testing and validation in the laboratory. 
	4.2. In collaboration with NMDOT, elaborate scientific hypothesis on preliminary testing and validation in the laboratory. 
	In order to explore a scientific hypothesis of the new proposed approach and solution with the selected LiDAR, the research team visited in November 2019 a bridge construction with the NMDOT. During this bridge inspection and with meetings over the phone afterwards, the NMDOT outlined the objectives of the scanning for UNM. As a result, the proposed hypothesis from UNM is that the scanning can collect rebar spacing that is more accurate and in a faster, safer, and convenient inspection process than the curr
	Figure
	Figure 5. Workflow of Bridge Scanning by LIDAR System. 
	The methodology presents a LIDAR scanning based geometric data collection process for bridge reinforcing bar using a case study. Researchers created 3D models for the bridge reinforcing bar cage with LIDAR scanned data for further analysis, such as visualization, geometric feature extraction. We compared both the current bridge designed data from the CAD system and the LIDAR scanning data in data collection, data processing, and data interpretation. A comparison of these processes showed that the LIDAR scan


	5. RESULTS 
	5. RESULTS 
	This section advances the results from Chapter 4 in the following subsequent tasks: developing experiment in the laboratory, propose objective assessment of rebar quality with NMDOT, and report the results to NMDOT, and receive their feedback prior to bridge testing. The PIs prepared the ZEB LIDAR scanner equipment for the experiment and conducted first experiment in a wingwall rebar cage in CoreSLAB, which is a structure being scanned in the field, which is more advanced that the laboratory conducted prior
	5.1. Scan Object: Wingwall Reinforcing bar Cage 
	Bridge wingwalls are the retaining walls adjacent to the abutment of the bridge. Wing walls are provided at both ends of the abutments to retain the earth filling of the approaches. There are more than 13,000 integral abutment bridges in service in the USA. Wingwalls are a necessary component of the most integral abutment bridges to retain the fill that supports the roadway. Wingwalls design, construction, orientation and connection details can impact the forces induced in and the distribution of the forces
	Wingwall 
	Figure 6. A constructed bridge with cantilevered flared wingwalls. 
	5.2. Experiment Setup 
	5.2. Experiment Setup 
	This experiment developed an automated quality assessment technique for precast reinforcing bar cage. Figure 7 (a) shows the schematic of the overall hardware configuration for the proposed technique. It is assumed that the reinforcing bar cage and the LIDAR scanner positioned above the rebar cage scans the whole surface in a single scan. Figure 7(b) shows the necessary steps for the proposed reinforcing bar spacing quality assessment technique, which includes data acquisition, data processing, reinforcing 
	Figure
	Figure 7. LIDAR Reinforcing bar scanning: (a) setup; (b) framework. 

	5.3. Experiment Data Collection 
	5.3. Experiment Data Collection 
	The data acquired in this experiment was collected within the CoreSLAB testbed where a wingwall reinforcing bar cage that would be found on a bridge was constructed. The reinforcing bar cage was designed and fabricated to easily simulate various reinforcing bar configurations. The configuration of the reinforcing bar cage uses #5 reinforcing bar. The two layers of reinforcing bar are separated by approximately 4 inches. In this case, the site coordinates of the testbed are predefined using surveying techniq
	Figure
	Figure 8. Data Collection. Left: Measurement by tape; Right: Measurement by LIDAR scanner. 
	Foremost, it is necessary to determine the position and scan parameters of the LIDAR scanner to achieve the highest inspection quality. Three main factors, which influence the measurement accuracy of the LIDAR scanner, are (1) distance, (2) incident angles between the scanner and a target structure, and (3) angular resolution of the LIDAR scanner. Once the position and scan parameters of the LIDAR scanner are determined, a region of interest (ROI) covering the precast reinforcing bar cage was selected after
	StyleSpan
	StyleSpan
	StyleSpan


	5.4. Automatic Reinforcing Bar Detection Algorithm 1 
	5.4. Automatic Reinforcing Bar Detection Algorithm 1 
	Before further data analysis, researchers denoised the scanned wingwall point cloud data and get rid of the noise. A total of 4,182,316 points was denoised to 489,484, only 11.7% of raw data. The commercial software CloudCompare was employed to reduce nonrelated data and only keep reinforcing bars. Additionally, the x and y axis of the point cloud was aligned with the direction of the reinforcing bar. Figure 9 below shows the flow chart of algorithm 1. The step-by-step description is sort points along a giv
	Figure
	Figure 9. Flow Chart of Processing Algorithm 1. 
	Table 4 shows the pre-processing of point cloud data. The four figures of this table show the data denoising results of point cloud model. The number of points in the original as-built point cloud is 4,182,316, the number of points after denoising is 2,783,811, the number of top layer point cloud model is 293,690 and the number of bottom layer point cloud model is 217,434. 
	Table 4. Scanner Data pre-processing. 
	Scan Date Number of points in the original as-built point cloud Number of points after denoising 4,182,316 2,783,811 
	Figure
	3/22/2020 Number of points of the top layer Number of points of the bottom layer 293,690 217,434 
	Figure
	The algorithm can be thought of as a one-dimensional density by depth approach. It seeks to obtain the point density along a given axis of the point cloud. To accomplish this, it begins by sorting the data along a given axis. Once the data has been sorted, it divides the points into bins of equal physical distance along the axis; these bins are referred to as "slices" or "layers". It divides the number of points in a slice by the width of the slice to obtain the average density within that slice. By taking 
	Figure
	Figure 10. Diagrammatic Drawing of Algorithm 1. 
	Figure 10. Diagrammatic Drawing of Algorithm 1. 


	Reinforcing bar perpendicular to a given axis show up as locally dense regions in the corresponding density plot. By extracting these regions as "local maxima" within the density plot, the algorithm can obtain the average location of a given reinforcing bar perpendicular to the corresponding axis. Figure 11, Figure 12 and Figure 13 show results of the density plots. Figure 11 shows the output of different axis reinforcing bar spacing plot. Figure 12 presents the derivative of output of different axis rebar 
	Lastly, researchers made a note of the difference between center to center spacing and clear cover. For the reinforcing bar, the algorithm identifies the distance between the centroids of their locations. For clear cover, however, the edge of the formwork needs to be calculated, not the centroid of the formwork wall (which the local maxima would yield). For this, we actually require the "toe" of the maxima associated with an edge. This "toe" will correspond to the closest "near zero" point in the derivative
	Figure
	Figure 11. Output of different axis reinforcing bar spacing plot. 
	Figure 11. Output of different axis reinforcing bar spacing plot. 


	Figure
	Figure
	Figure 12. Derivative of Output of different axis reinforcing bar spacing plot. 
	Figure 12. Derivative of Output of different axis reinforcing bar spacing plot. 


	Figure
	Figure 13. Density plots overlay point data. 
	Figure 13. Density plots overlay point data. 


	Figure 14 shows the spacing of the two axis of the wingwall reinforcing bar cage according to the proposed algorithm. Figure 14 shows the spacing for side rebar of the rebar cage. The LIDAR measurement is calculated by MATLAB and marked by black number; the tape measurement marked by red number. Figure 14 shows the comparison result of LIDAR measurement and the tape measurement. 
	Figure
	Figure 14. Reinforcing bar Locations Plotted Over Point Data with Measurements Labeled. 
	Figure 14. Reinforcing bar Locations Plotted Over Point Data with Measurements Labeled. 


	Table 5 shows the comparison of the algorithm results using the LIDAR data with the spacing using the tape measurement. As shown in the table, the largest absolute error for X axis is 0.4 inches, and the largest absolute error for Y axis is 0.6 inches. 
	Table 5. LIDAR Measurement and Tap Measurement Comparison. 
	X axis 
	X axis 
	X axis 
	Tape (inch) 
	LIDAR (inch) 
	Error (inch) 
	Y axis 
	Tape (inch) 
	LIDAR (inch) 
	Error (inch) 

	Spacing (1-2) 
	Spacing (1-2) 
	8.5 
	8.8 
	0.3 
	Spacing (A-B) 
	9.8 
	9.3 
	-0.5 

	Spacing (2-3) 
	Spacing (2-3) 
	8.8 
	9.0 
	0.2 
	Spacing (B-C) 
	8.8 
	9.0 
	0.2 

	Spacing (3-6) 
	Spacing (3-6) 
	8.8 
	9.1 
	0.3 
	Spacing (C-D) 
	9.5 
	9.0 
	-0.5 

	Spacing (4-5) 
	Spacing (4-5) 
	9.5 
	9.4 
	-0.1 
	Spacing (D-E) 
	8.0 
	8.4 
	0.4 

	Spacing (5-6) 
	Spacing (5-6) 
	9.3 
	9.2 
	-0.1 
	Spacing (E-F) 
	5.5 
	5.6 
	0.1 

	Spacing (6-7) 
	Spacing (6-7) 
	8.8 
	8.8 
	0 
	Spacing (F-G) 
	7.5 
	7.6 
	0.1 

	Spacing (7-8) 
	Spacing (7-8) 
	9.3 
	9.4 
	0.1 
	Spacing (G-H) 
	5.8 
	6.4 
	0.6 

	Spacing (8-9) 
	Spacing (8-9) 
	8.8 
	8.6 
	-0.2 

	Spacing (9-10) 
	Spacing (9-10) 
	8.3 
	8.5 
	0.2 

	Spacing (10-11) 
	Spacing (10-11) 
	7.5 
	7.8 
	0.3 

	Spacing (11-12) 
	Spacing (11-12) 
	8.3 
	7.9 
	-0.4 


	The tolerances on reinforcing bar position, according to ACI 117, is the permitted variation from a given dimension—in other words, how far off the reinforcing bar is from what is shown in the drawings. For example, if the clear distance between the outside of a reinforcing bar and the face of a 6-inch-wide concrete beam is specified to be 2 inches, the tolerance allows it to be no less than l 5/8 inches. The tolerance on the position of longitudinal bars is much more relaxed: ±3 inches. This is because the
	The tolerances on reinforcing bar position, according to ACI 117, is the permitted variation from a given dimension—in other words, how far off the reinforcing bar is from what is shown in the drawings. For example, if the clear distance between the outside of a reinforcing bar and the face of a 6-inch-wide concrete beam is specified to be 2 inches, the tolerance allows it to be no less than l 5/8 inches. The tolerance on the position of longitudinal bars is much more relaxed: ±3 inches. This is because the
	cover is maintained, and the specified number of bars are included. The proposed algorithm can measure the spacing errors with less than 3 inches, therefore, is adequate for the measurement of longitudinal bars. 


	5.5. Automatic Reinforcing Bar Detection Advanced Slicing Algorithm 
	5.5. Automatic Reinforcing Bar Detection Advanced Slicing Algorithm 
	This section updated the algorithm based on the feedback from NMDOT experts, which was shown in a teleconference on August 2020. The updated research estimated the location of each rebar in every bay; hence each rebar has an associated position in each bay and direction. If one rebar is bent accidentally during construction, the projection algorithm may not detect that level of details of inner rebar bays. 
	In order to increase the accuracy of the measurement algorithm, researchers advanced the algorithm by finding average of each cluster, get the reinforcing bar location of each bay. Figure 15 shows the diagrammatic drawing of the advanced algorithm. As shown in the figure, the red arrows represent the spacing of each bay for the rebar cage in the automatic reinforcing bar identified by the data. 
	Figure
	Figure 15. Diagrammatic Drawing of Advanced Algorithm. 
	Figure 15. Diagrammatic Drawing of Advanced Algorithm. 


	Automatic reinforcing bar identification for X axis followed the steps like below: 
	1. 
	1. 
	1. 
	Automatic splicing in X direction in between peaks 

	2. 
	2. 
	Measure automatic splicing 

	3. 
	3. 
	Find the Y and Z locations of each reinforcing bar in every bay being measured 

	4. 
	4. 
	Automatic measurement of Y axis and Z axis for all bays in X axis could be found 


	Figure 16 shows the data processing of X axis. Figure 16 shows specifically one example of one bay automatic determination of Y and Z axis. By applying the same algorithm to Y axis, Automatic measurement of X and Z for all bays in Y axis, as shown in Figure 17. 
	Figure
	Figure 16. Diagrammatic Drawing of Slicing X-Axis. 
	Figure 16. Diagrammatic Drawing of Slicing X-Axis. 


	Therefore, the automatic reinforcing bar identification algorithm for X axis and Y axis is shown in Figure 18. The value in blue color is the spacing of X axis, while the value in red color is the spacing of Y axis. This figure shows how the algorithm captures the slope in Z axis which can demonstrate that the algorithm is indeed able to measure the slope of the rebar in the field. 
	Figure
	Figure 17. Diagrammatic Drawing of Slicing Y Axis. 
	Figure 17. Diagrammatic Drawing of Slicing Y Axis. 


	Figure
	Figure 18. Spacing of each reinforcing bar along X and Y axis. 
	Figure 18. Spacing of each reinforcing bar along X and Y axis. 


	Compared the LIDAR measurement value and the design drawing values the error of the construction reinforcing bar cage is gained, which is shown in Table 6. Table 6 lists all the spacing of the rebar cage, totaling 69 bays. The mean error value of LIDAR measurement and designed spacing for X axis is 0.49 inches, the mean error value of LIDAR measurement and designed spacing for Y axis is 0.46 inches. 
	The advanced algorithm has proved the following functions: 
	 
	 
	 
	Can find all the spacing of each cluster along X and Y axis. 

	 
	 
	Automatic values. 

	 
	 
	It was also computed for Z elevations. It was also calculated for the bottom cage. 

	 
	 
	It can be very beneficial for larger concrete decks. 


	Table 6. LIDAR Measurement vs. Designed Measurement. 
	X axis Bay LiDAR Measurement (inch) Designed (inch) Error (inch) Y axis Bay LiDAR Measurement (inch) Designed (inch) Error (inch) ○1 A-B 9.37 9.00 0.37 ○A 1-2 8.88 9.00 -0.12 ○2 A-B 9.40 9.00 0.40 2-3 8.27 9.00 -0.73 ○3 A-B 9.11 9.00 0.11 3-4 9.76 9.00 0.76 B-C 8.78 9.00 -0.22 4-5 9.32 9.00 0.32 ○4 A-B 9.21 9.00 0.21 5-6 8.85 9.00 -0.15 B-C 8.81 9.00 -0.19 6-7 9.20 9.00 0.20 ○5 A-B 9.10 9.00 0.10 7-8 8.96 9.00 -0.04 B-C 9.06 9.00 0.06 8-9 8.46 9.00 -0.54 C-D 8.23 9.00 -0.77 9-10 7.55 9.00 -1.45 ○6 A-B 9.20 

	5.6. Bridge Reinforcing Bar Construction Quality Scale: preliminary specifications using LiDAR 
	5.6. Bridge Reinforcing Bar Construction Quality Scale: preliminary specifications using LiDAR 
	This section includes work for Task 4 and Task 7. Task 4 need to establish preliminary specifications for QOQCQA. The PIs modified and responded the feedback from the experts of the NMDOT and Tran-SET. The authors established a bridge reinforcing bar construction quality scale and implemented this scale to the rebar construction quality. 
	According to the ACI 117 specifications for bridge construction tolerances, the acceptable error for reinforcing bar placement is 0.5 inches. The researchers set the quality evaluation scale as equation 1. 
	𝑆𝑐𝑎𝑙𝑒 = 100 − 𝑒𝑟𝑟𝑜𝑟 ∗ 100 (Eq.1) 
	𝑆𝑐𝑎𝑙𝑒 > 50 (𝑔𝑜𝑜𝑑) 
	If the error is smaller than 0.5 inches, the scale will be larger than 50. The higher the score is, the better the construction quality is. 
	According to the mean error in table 6, we can get the scale for X axis is 51, the scale for Y axis is 54. The reinforcing bar construction quality in the floor plan is good. 
	𝑆𝑐𝑎𝑙𝑒 = 100 − 𝑒𝑟𝑟𝑜𝑟 ∗ 100 = 100 − 0.49 ∗ 100 = 51 
	𝑆𝑐𝑎𝑙𝑒 = 100 − 𝑒𝑟𝑟𝑜𝑟 ∗ 100 = 100 − 0.46 ∗ 100 = 54 
	In addition, the reading of the elevation placement location of each reinforcing bar and the mean value of elevation error compared with the design value is 0.37 inches. The scale calculated by Eq. 1 is 63, which means the vertical placement quality of the reinforcing bar is good. 
	By applying the same automatic reinforcing bar identification algorithm, the bottom layer of the scanned wingwall cage quality is good. The quality scale for horizontal reinforcing bar location is 60, the scale for vertical reinforcing bar location is 72. 
	The conclusion for the advanced algorithm is that with the increasing use of LIDAR scanning technology, rapid and automated bridge construction quality assessment technologies are quickly becoming a reality: benefiting from its operation speed and high data resolution, point cloud data from 3D scanner can be automated for structural components detection. In this paper, a case study has been presented to demonstrate the capabilities of 3D LIDAR scan to quantify the spacing between reinforcing bars. The most 

	5.7. Bridge Reinforcing Bar Construction Inspection in Route 66 
	5.7. Bridge Reinforcing Bar Construction Inspection in Route 66 
	This section summarizes the bridge inspection conducted in Route 66 to explore the implementation of the new technology in real scenarios. Given limitations by COVID, the team had to wait for approval from UNM to access this bridge with the same technology tested in CoreSLAB, which was possible in November 2020. NMDOT and UNM discussed since August 2020 that even COVID was a challenge, it would be beneficial to add a bridge scanning when possible in this project. UNM made this a priority. On October, NMDOT 
	This section summarizes the bridge inspection conducted in Route 66 to explore the implementation of the new technology in real scenarios. Given limitations by COVID, the team had to wait for approval from UNM to access this bridge with the same technology tested in CoreSLAB, which was possible in November 2020. NMDOT and UNM discussed since August 2020 that even COVID was a challenge, it would be beneficial to add a bridge scanning when possible in this project. UNM made this a priority. On October, NMDOT 
	the field. NMDOT and UNM also discussed the barriers for implementation before, during and after the scanning to complete the tasks of this research in the context of new rebar inspection specifications. From NMDOT’s perspective, the LiDAR scanning and the results in the bridge indicate that in the future this technology can be included with some changes in the current contract documents and that are discussed at the end of this chapter. 

	The bridge was in the historic Route 66, in the East-West direction, in the South side of the existing road and 20 miles East of Tutumcari. The PI coordinated with NMDOT bridge and construction crews to ensure safety precautions were always prioritized. Snow storms delayed the inspection to November 22020 (Monday.) The drawings informed the scanning preparation. The images of the bridge and the scanning results are shown in the next page. 
	nd 

	Figure
	Figure 19. Tutumcari bridge: (top) drawings; (bottom) field construction. 
	Figure 19. Tutumcari bridge: (top) drawings; (bottom) field construction. 


	Figure
	(a) (b) 
	Figure
	Figure 20. Photo and Point Cloud models of Bridge Construction site in Route 66: (a) Photo of bridge construction site; (b) Point cloud model of Bridge Construction site; (c) Detail elevation of rebar view. 
	Figure 20. Photo and Point Cloud models of Bridge Construction site in Route 66: (a) Photo of bridge construction site; (b) Point cloud model of Bridge Construction site; (c) Detail elevation of rebar view. 


	(c) 
	Figure 21 shows the reinforcement data processing of the bridge. The PIs used the tape measurement collected rebar spacing at the corner of the bridge, which is shown in Figure 21 (a). The LIDAR data of the spacing is shown in Figure 21 (b). Figure 21 summarizes the comparison example of the first rebar in the transverse direction of the top mat in the South East corner of the concrete deck using the proposed methodology. The LiDAR data also finds other formwork elements such as the four anchors near the ed
	Figure 21 shows the reinforcement data processing of the bridge. The PIs used the tape measurement collected rebar spacing at the corner of the bridge, which is shown in Figure 21 (a). The LIDAR data of the spacing is shown in Figure 21 (b). Figure 21 summarizes the comparison example of the first rebar in the transverse direction of the top mat in the South East corner of the concrete deck using the proposed methodology. The LiDAR data also finds other formwork elements such as the four anchors near the ed
	summarizes the comparison with both sets of data. The average error with a preliminary estimation of the LiDAR comparison is below 0.50 inches, but based on the precast plant experiment this accuracy can be improved with slower scanning. This will be also discussed in the next section. 

	Rebar spacing LiDAR check Rebar spacing tape check 
	Figure 21. Rebar spacing of bridge: (a) photo of tape measurer; (b) LiDAR data spacing 
	Figure 21. Rebar spacing of bridge: (a) photo of tape measurer; (b) LiDAR data spacing 


	Table 7. Comparison of Rebar spacing of bridge using tape measurement and LIDAR data. 
	Spacing (left -right) Tape (inches) LIDAR (inches) Error (inches) 6.14 5.85 0.29 6.00 5.50 0.50 2.51 2.36 0.15 8.51 8.20 0.31 7.95 7.04 0.91 Average error 0.43 

	5.8. Updated Specifications based on Bridge Inspection 
	5.8. Updated Specifications based on Bridge Inspection 
	This section summarizes the proposed specifications based on discussions with NMDOT on the use of field data to inform decisions on rebar location prior to concrete pour. The research team discussed both with NMDOT and the consulting experts on rebar inspection the importance of conducting a scanning prior to the concrete pour to produce a permanent record of the rebar for future inspections or activities in the field. The update of specifications on DOTs using this LiDAR inspection automatically obtained i
	-The LiDAR equipment is already accepted as a tool in NMDOT and it is expected to increase its relevance in the years to come. 
	-The results of this research support further use and investigation of using LiDAR as a 
	tool for permanent record of the bridge construction. 
	-The analysis of the data from the scanning takes excessive time and it would be of 
	interest to the specifications to specifically indicate the time restrain on scanning and 
	informing the contractor on 
	o 
	o 
	o 
	the spacing 

	o 
	o 
	the accuracy 

	o 
	o 
	the score 

	o 
	o 
	the required action (pass, not pass, rectify, pour concrete, stop) 


	-The time of the analysis in the field is of top priority for further inclusion of LiDAR in the standard specifications. The officer from NMDOT indicated that their concern is that they have to wait one day to receive the scores. 
	-The solution of cloud computing was discussed as an option, but there are concerns on infrastructure enabling to do this in remote bridges for practical specifications. 
	The PhD student therefore has submitted the results reported herein to one journal paper which is currently under review, and preparing two new journal papers. The 2journal paper emphasizes the accuracy of the method from a data science perspective in the bridge data. The 3journal paper emphasizes the quantification of quality and its implementation in DOTs specifications, using the results of this project. 
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	rd 

	6. CONCLUSIONS AND FUTURE RESEARCH 
	The overall objectives of this project were to investigate the application of LIDAR technology to help automatically is going to measure the 3D reinforcement layout during bridge construction. The overall object was decomposed into four research objectives. The first research objective included testing if LIDAR can collect reinforcing data in the field. The second research objective included quantifying the ability of LiDAR to inform QCQA during construction inspections. The third research objective include
	The results of this research are summarized in the following sections, those related to the technical development of new LIDAR technology that are related to the transportation industry, and other outcomes because of education and training. Therefore, the technical findings achieved with this research can be summarized in the following categories: 
	 
	 
	 
	Collaboration with owners of infrastructure: workshop, industry feedback, and opportunities for LIDAR technology development based on practical implementation in industry. 

	 
	 
	Development and validation of LIDAR technology applications in comparison with current inspection tools and procedures. 

	 
	 
	Teaching and training in College level of LIDAR technology and feedback and interest from students to learn about LIDAR technology for transportation infrastructure. 


	6.1. NMDOT and LIDAR Technology 
	The result of the various LIDAR technology in bridge inspection progress in the year has contributed to a demonstration of LIDAR technology to NMDOT on its potential to assist bridge inspectors, which was conducted in NMDOT 2020 Paving and Transportation Conference January 92020. Dozens of bridge inspectors attended a practical presentation about the use of LIDAR technology for bridge inspections. The main component of this activity was the dialog from the NMDOT's perspective of what would be useful as a pr
	th 
	th 

	Figure
	Figure 22. NMDOT Demonstration on LIDAR technology (January 9st, 2020). 
	Figure 22. NMDOT Demonstration on LIDAR technology (January 9st, 2020). 



	6.2. Industry Impact of LIDAR Project 
	6.2. Industry Impact of LIDAR Project 
	The result of the various LIDAR technology in bridge inspection progress has collaborated with leaders in CoreSLAB Structures (CONN) Inc. Since 1975, CoreSLAB Structures is a premier producer of precast/prestressed concrete products. Over the last four decades, they have emerged as a major supplier of structural, architectural and hollow core solutions to markets in Canada and the United States. Researchers talked to the manager of CoreSLAB Structures, they showed great interest in the LIDAR application in 
	nd 

	Figure
	Figure 23. Collaboration with Industry (March 22nd, 2020). 
	Figure 23. Collaboration with Industry (March 22nd, 2020). 



	6.3. Inaugural SMILab Workshop (SMIWeb) supported by Tran-SET 
	6.3. Inaugural SMILab Workshop (SMIWeb) supported by Tran-SET 
	The first-ever SMIWeb workshop, July 92020, was directed at researchers, students, and professionals from industry interested in learning about new technologies with practical implementation in smart structures technologies. Senior researchers presented their unique projects and contributions to the engineering field. The emphasis was to increase awareness about future directions in smart structures that can be of interest in the next decade. LIDAR for bridge inspections was presented by Ph.D. student Xinxi
	The first-ever SMIWeb workshop, July 92020, was directed at researchers, students, and professionals from industry interested in learning about new technologies with practical implementation in smart structures technologies. Senior researchers presented their unique projects and contributions to the engineering field. The emphasis was to increase awareness about future directions in smart structures that can be of interest in the next decade. LIDAR for bridge inspections was presented by Ph.D. student Xinxi
	th, 
	st 

	picture is Xinxing Yuan’s presentation of “Bridge Construction Monitoring using LIDAR for Quality-Control, Quality Assurance (QCQA)”. 

	Figure 24. Shared Research on LIDAR Technology in SMIWeb (July 9th, 2020). 

	6.4. Communicating and Training LIDAR Technology 
	6.4. Communicating and Training LIDAR Technology 
	The LIDAR team is adapting LIDAR's ability to measure and quantify changes in structures in real time to attract other sources of support to research. The research on LIDAR was communicated in Women's Issue in Transportation in California, Irvine. See Figure 22. Figure 22 shows the picture of researcher communicated with other women researchers of LIDAR project. In this Figure, the PhD student is standing with the chairman Therese McMillan and other committee members during the conference. As seen in this i
	Figure
	Figure 25. Communicated with other women researchers of LIDAR project. 
	Figure 25. Communicated with other women researchers of LIDAR project. 


	Figure
	Figure 26. Communicated the LIDAR research with other Ph.D. seniors. 
	Figure 26. Communicated the LIDAR research with other Ph.D. seniors. 


	Figure
	Figure 27. Presented the LIDAR technology to Menaul school students. 
	Figure 27. Presented the LIDAR technology to Menaul school students. 



	6.5. Patent Innovation 
	6.5. Patent Innovation 
	A patent has been approved on the LIDAR technology titled "The Automatic Quality-Control Quality-Assurance Inspector (AQQI)" based on this project. UNM Rainforest Innovations has filed intellectual property on this exciting new technology. Market application of LIDAR technology would be 
	 
	 
	 
	US Department of Transportation (USDOT) 

	 
	 
	 
	Construction Project Inspection 

	o 
	o 
	o 
	Reinforcing bar Inspection 

	o 
	o 
	Construction Progress 

	o 
	o 
	Quality Control/Quality Assurance 

	o 
	o 
	Automatic determination of strength quality during construction using real-time structural capacity using exact reinforcing bar layout in the field during construction 



	 
	 
	 
	Other automatic applications for LiDAR include: 

	o 
	o 
	o 
	Assess the condition of assets in construction 

	o 
	o 
	As-built mapping and documentation 

	o 
	o 
	Situational awareness for vehicle navigation 

	o 
	o 
	Inundation/flood modeling 

	o 
	o 
	Landslide monitoring/modeling 

	o 
	o 
	Erosion monitoring/modeling 

	o 
	o 
	Automatic accident scene documentation 





	6.6. Future Research 
	6.6. Future Research 
	Researchers are going to use a ZEB Horizon with quick release UAV mount to collect the bridge data in the field construction site. The UAV with LIDAR scanner can collect 3000,000 data points per second from the bridge, without need for GPS. The direct involvement of the bridge group from NMDOT will guarantee the practical quantification of QAQC of bridges in DOTs using new technologies Field Implementation. Figure 25 shows the UAV SLAM LIDAR scanner collect the data in the field bridge construction site. Fo
	Figure
	Figure 28. UAV SLAM LIDAR Scanner Data Collection. 
	Figure 28. UAV SLAM LIDAR Scanner Data Collection. 


	Researchers tried to use low-cost sensors to inspect the reinforcing bar cage in the laboratory. Azure Kinect D.K. is a developer kit with advanced Artificial Intelligence (AI) sensors for sophisticated computer vision and speech models. Designed for versatility, it combines an advanced depth sensor and spatial microphone array with a video camera and orientation sensor— with multiple modes, options, and SDKs. Azure Kinect sensor only cost hundreds of dollars. The scanning range needs to be improved for fie
	Figure
	Figure 29. Azure Kinect sensor. 
	Figure 29. Azure Kinect sensor. 


	Figure
	Figure 30. The laboratory validation by Azure Kinect sensor in CARC, UNM. 
	Figure 30. The laboratory validation by Azure Kinect sensor in CARC, UNM. 


	Figure
	Figure 31. Field Testing using Azure Kinect scanner in CoreSLAB. 
	Figure 31. Field Testing using Azure Kinect scanner in CoreSLAB. 
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